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The FF concept (1/4)

Standard quantum-chemistry workflow:
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with potential energy V(R) = E.(R) : : : . : .

R/ bohr
Note: This simplifies the calculations, but is not an approximation if many coupled V(ﬁ) are used.

FF idea: step 1 is expensive = skip it! Obtain function(s) V(R) from e.g.:

e educated guesses

e interpolation between / fitting to a few computed Ey(R) values



The FF concept (2/4)

“coarse-graining away’ the electrons
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The FF concept (3/4)

e things to learn:
— there is nothing classical-mechanical about FFs; they simply are a short-cut to solutions of the
electronic Schrodinger equation

— eigenvalues of the electronic Schrodinger equation are unique, deterministic, and well-behaved
= can be modelled by simple mathematical functions

— —

— V(R) = E.(R) is fully determined by which nuclei are in which positions R (this includes
information on how many electrons there are), i.e., by the usual input to a quantum-chemical
calculation

= in principle, FFs can handle everything that is accessible to quantum chemistry! (in principle,
at any level, including fullCI/CBS, not just HF or DFT)

For example, FFs can (and have been) used for

— complicated transition-metal coordination complexes
— metal-organic frameworks (MOFSs)

— isolated molecules, bulk, surfaces

— liquids, solids, interfaces, films, layers, clusters

— isolators, semiconductors, metals



The FF concept (4/4)

e FIF' advantages:

— instead of nuclei and electrons only complete atoms: fewer particles!

— electrons have to be treated quantum-mechanically,
whole atoms can be treated classically (or quantum-mechanically)

—

— evaluation of the simple function V(R) is MUCH faster than
solving the electronic Schrodinger equation: see below

e FF disadvantages:
— properties depending explicitly on the electrons are difficult or impossible to represent with FF's
(but there are few properties of this kind; and tricks can be used: see below)
—no FF is known that is both universal and sufficiently accurate
— = often, for new systems, a new FF has to be generated

— transferability of a FF to other systems is unclear

In contrast, ab-initio quantum chemistry is universal by construction.
So, why FFs?



Why FFs? The speed advantage

ab-initio MD:
nuclei: classical-mechanical dynamics
electrons: quantum-mechanical forces on the nuclei

Accessible Systems: !
e on massively parallel HPC hardware
e 1001000 aomts
e 2-200 ps simulated time in 1 week real time

e time step ~ 0.2 fs
= 10*-10° time steps in 1 week real time

1 J. Hutter, WIREs Comput. Mol. Sci. 2 (2012) 604. .



Why FFs? The speed advantage

FF-MD:
nuclei: classical-mechanical dynamics
force field: forces on the nuclei

Accessible Systems:
e on massively parallel HPC hardware

e long times: folding of ubiquitin?,
total simulated time 8 ms
(time step 5 fs = 1.6 x 10'? steps)

e huge systems: 1.34 x 10'" atoms in simulations® of
material deformation after hypersonic impact

2 S. Piana, K. Lindorff-Larsen and D. E. Shaw, Proc. Natl. Acad. Sci. USA 110 (2013) 5915.
2 A. Nakano et al., Int. J. High Perf. Comput. Appl. §2 (2008) 113.



Simple (bio)chemistry FFs

Functional form of a “class-I” force field (AMBER/GAFF, CHARMM, OPLS, MM2/3/4, ...):
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e several different contributions, with “physical” functional forms
e several parameters in each term
e obviously, each parameter in each term should also depend on which atoms are involved

e in contrast to ab-initio quantum chemistry, FF users also need to specify bonds between atoms!



Simple (bio)chemistry FFs

Obviously, the class-I functional form is too simple; we should also consider class-II, class-I1I, ..., terms:

5

Stretch - stretch Stretch — torsion

Bend — bend

o

Stretch — bend Bend — torsion

(cf. e.g. Leach)
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Simple (bio)chemistry FFs

Most biochemistry force fields have atom types:

not only for different bond angle preferences,

but also for much finer differentiation:
Small(!) part of the OPLS-AA oxygen atom definitions:
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Simple (bio)chemistry FFs

e atom types, advantages: one atom type = one very specific situation

— far better accuracy of the FF
— much clearer which reference data are needed (and for which parameters)

— different atom types constitute independent parts of the FF
e atom types, disadvantages:

— the user has to assign an atom type to every atom by hand
(painful to impossible for > 100 atoms)

— realistic chance that the atom type you need is missing

— serious proliferation of parameters: (for MM3(91), with 71 atom types; from Leach)

term estimated #params actual #params
vdW 142 142
bond 900 290
angle 27000 824
torsion 1215000 2466

= bad consequences:

x fitting all possible parameters would require ~ 107 independent reference data items: impossible!

x for your non-trivial molecule, it is almost certain that some torsional parameters are missing!
= Use your chemical judgement to borrow values from similar, existing torsions.

13



From fixed point charges to polarizability

Istill 2b done!

e TIP4P as example for a fixed-point-charge FF: nice h-bondsl!

e rule of thumb: w/o polarizability fine for neutrals and cations, not good for anions
e Drude model for polarizability

e polarizable FFs: TTM2/3-F, AMOEBA, etc.

Istill 2b done!

14



FFs for (inorganic) materials: dielectrica, semiconductors, metals

Without directional bonding (angle, torsion) terms, many FFs are sums of pairwise interactions. However,
pure pairwise potentials fail for certain bulk or surface properties, for several general reasons:

e ratio between melting temperature T, and cohesive energy FE. (energy cost of removing an atom
from the solid):

EC . . Ec
observed for metals: T =30, pair potentials: — =10 (6)
e ratio between E. and vacancy formation energy F,:
E, 1 1 _ _ v :
observed for metals: 7 = gto 1 pair potentials: 7 = 1 (w/o relaxation) (7)

e in cubic crystals, there are only three elastic constants (Chy, Cio and Cly) that do not have to be
identical due to symmetry. Pair potentials further restrict this to Cho = Cyy, although in many
materials (metals, oxides, gold, ...) these two values are different.

e Real metal surfaces tend to relax inwards, but surfaces of pair-potential models tend to relax outwards.

Intuitive reason: Pair potentials fail to describe changes in pair contributions depending on 3rd, 4th,
...atoms in the immediate neighborhood. E.g., on surfaces, there typically are fewer but stronger bonds
than in the bulk.

Therefore, starting from the ~1980ies onwards, many different potentials with suitable 3-body, 4-body,
... contributions were developed. The following attempts a unified view:

15



FFs for (inorganic) materials: dielectrica, semiconductors, metals

Embedded-atom method (EAM):

V(R) =Y Va(riy) + Y Vilps)  with (8)

j<i i
e a pairwise repulsive potential V5, depending on atom-atom distances 7;;

e an “embedding function” Vi, representing the energy to put atom ¢ into its position, within the

electron density p; at this location, given by a simple superposition of atomic densities from the
neighboring atoms.

Originally (Daw/Baskes, Phys.Rev.B 29 (1984) 6443; Foiles/Baskes/Daw, Phys.Rev.B 33 (1986) 7983),

e atomic densities were taken from Hartree-Fock calculations for single atoms (via tabulated values),

e and functional forms for V; and V5 were adjusted to fit known bulk properties, since formal derivation
of these functions yielded only qualitatively correct results at best (Foiles/Baskes/Daw).

Advantages:

16



“reactive” FF's

e reaxF'F, COMB, and others; including relation to Tersoff, BOPs, etc.
e methods for coupling non-reactive FF's, including EVB-QMDFF
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even weirder stuff

e coarse-grained FFs

e photochemistry with FF's
e Bill Goddard’s “electron FE”
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discussion: is it advisable/possible to build your own FF?
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FFs w/o physical terms

e neural net potentials and others

e machine learning stuff

20



some application cases
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a brief glimpse on software

(difficult!)

e tinker

e gromacs, amber, namd, et al.
e LAMMPS

o ASE

e Avogadro, packmol, and friends
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7 WW of 2 molecules in the gas phase

(not sure, this would have go all the way towards global structure optimization)
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7 adsorption at surfaces

brief discussion of advantages/disadvantages of

e 2D /3D-periodic surface calculations, vs.

e non-periodic cluster models for surfaces
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