Theoretische Chemie I: Quantenchemie

Bernd Hartke

Theoretische Chemie

Institut für Physikalische Chemie 5. Stock, Raum 519

Tel.: 0431/880-2753

hartke@phc.uni-kiel.de

http://ravel.phc.uni-kiel.de

Sprechstunde: jederzeit!

Neuer Wahlpflichtblock: Computerchemie / Theoretische Chemie

Inhalte: grundlegende Prinzipien und Anwendungsbeispiele zu

- Kraftfeldmethoden
- Molekülmechanik
- semiempirische Methoden
- qualitative MO-Theorie
- Quantenchemie
- Quantendynamik

Praxisrelevant für: Organik, Anorganik, Physikalische Chemie, Biochemie, Kolloidchemie, Polymerchemie, Materialwissenschaften, Meereschemie, Pharmazeutische Chemie, Medizinische Chemie, Supramolekulare Chemie, Kristallographie, Mineralogie, ...

Veranstaltungen:

- Vorlesungen: (je 2 SWS)
 - Theoretische Chemie I und II, mit Übungen; Hartke
 - Computerchemie/Modelling I und II; Herges
- Praktikum: 6-wöchig ab Semestermitte im Computerlabor
- Leistungsnachweis (Schein): Klausur zu TC-I, CC-I und Praktikum

Voraussetzungen:

- Grundkenntnisse der Quantenmechanik aus Vorlesung PC-II; können auf Wunsch in den Übungen wiederholt und vertieft werden
- Vorlesungen TC-I und CC-I sollten vor oder im gleichen Semester des Praktikums gehört werden

Inhaltsplan Theoretische Chemie I

- Schrödingergleichung, Born-Oppenheimer-Separation
- Vielteilchenwellenfunktionen, Pauli-Prinzip
- Hartree-Fock-SCF-Verfahren
- Basisfunktionen
- Ablauf einer HF-SCF-Rechnung
- Gradienten und Frequenzen
- Moleküleigenschaften
- typische Resultate und deren Bewertung
- Elektronenkorrelation, Bindungsdissoziation
- ROHF, UHF, Mehr-Determinanten-Wellenfunktionen
- \bullet Grundideen von FCI, CISD, MCSCF, CC, \ldots
- \bullet störungstheoretische Behandlung der e⁻-Korrelation: MP2
- \bullet e
–-Korrelation "durch die Hintertür": DFT

Ziele der Veranstaltung:

- Grundverständnis der wichtigsten Praxismethoden (HF, DFT, MP2)
- derartige Rechnungen selbst durchführen können
- kritische Einschätzung der erzielten Resultate

Inhaltsplan Theoretische Chemie II

- Kurzwiederholung TC-I:
 - Schrödingergleichung
 - Hamiltonoperator
 - Born-Oppenheimer-Separation
- Klassische Dynamik
- Quantendynamik, Teil I: zeitunabhängige Schwingungswellenfunktionen
 - Form des Potentials \leftrightarrow Form der Wellenfunktion
 - direkte numerische Berechnung der Wellenfunktion in 1D
 - Fourier transformation Ortsraum \leftrightarrow Impulsraum
 - Ermittlung der Wellenfunktion durch Basisentwicklung
 - mehrdimensionale Fälle
- Quantendynamik, Teil II: zeitliche Entwicklung von Wellenfunktionen
 - Zeitverhalten von Wellenfunktionen: Superposition von Eigenfunktionen
 - Wellenpakete
 - Zeitpropagation: formal und praktisch
- Anwendungen in der Reaktionsdynamik:
 - Berechnung von Eigenfunktionen durch Zeitpropagation
 - zeitabhängige Spektrensimulation
 - Grundlagen der Streutheorie, Vergleich mit hochaufgelösten Experimenten
 - ab-initio-Berechnung von Reaktionsgeschwindigkeitskonstanten k(T):
 - \ast Kurzwiederholung: Statistische Thermodynamik
 - \ast Kurzwiederholung: Theorie des Übergangszustands (TST)
 - \ast variational transition state theory (VTST)
 - \ast Korrekturen zu TST durch klassische Moleküldynamik
 - $\ast\,$ exakte quantenmechanische Berechnung von k(T) durch Fluß-Fluß-Autokorrelation
 - * Vergleiche mit dem Experiment

Ziele der Veranstaltung:

- Grundverständnis der wesentlichen theoretischen Hintergründe der Reaktionsdynamik;
- Einschätzung, was man wie genau (und mit welchem Aufwand) rechnen kann.

Literaturempfehlungen:

- I. N. Levine: "Quantum Chemistry", 4. Ausgabe, Prentice-Hall, 1991: detaillierte und verständliche Herleitung der Grundlagen; zu kurz und nicht ganz aktuell bei tatsächlichen Anwendungsmethoden.
- W. Kutzelnigg: "Einführung in die Theoretische Chemie", 2 Bände aus den Jahren 1973/1978/1993, jetzt in 1 Band bei Wiley, 2002: Klassiker; sehr genau, detailliert und breit in den Grundlagen; kaum etwas zu modernen Methoden.
- P. W. Atkins and R. S. Friedman: "Molecular Quantum Mechanics", 3. Auflage, Oxford University Press, 1996: Standard-Lehrbuch; Lösungsbuch zu Übungen auch erhältlich.
- J. Simons and J. Nichols: "Quantum Mechanics in Chemistry", Oxford University Press, New York, 1997: gute Grundlagen und umfangreiches Aufgabenmaterial mit(!) Lösungen; viele nicht-Standard-Themen, läßt aber auch einiges aus oder führt es nicht weit genug.
- A. Szabo und N. S. Ostlund: "Modern Quantum Chemistry", revidierte 1. Auflage, McGraw-Hill, 1989: immer noch unschlagbar bei Herleitung von Hartree-Fock und bei den Grundideen einiger Korrelationsmethoden; ansonsten veraltet. (inzwischen als Taschenbuch-Nachdruck bei Dover für ca. 15 Euro zu haben).
- F. Jensen: "Introduction to Computational Chemistry", Wiley, 1999: sehr aktuelles und sehr umfassendes Werk, mit einigen Informationen zu modernen Methoden; setzt Grundlagen voraus; vielleicht stellenweise etwas knapp.
- T. Helgaker, P. Jørgensen und J. Olsen: "Molecular Eletronic-Structure Theory", Wiley, 2000: hochaktuelles und extrem umfassendes und detailliertes Monumentalwerk (900 Seiten) über HF, MCSCF, CI, CC, MPn, CASPTn; Nachteile: extrem hoher Preis (340 Euro!), manche Themen gar nicht behandelt (DFT, semiempirische Methoden, Ableitungen der Energie, Relativistik)
- P. von R. Schleyer (Ed.): "Encyclopedia of Computational Chemistry", Wiley, 1998: mehrbändiges Werk für Bibliotheken (\$ 3150.-) mit mehr oder weniger langen und mehr oder weniger guten Artikeln zu allen möglichen Themen der Theoretischen Chemie und Computerchemie
- R. G. Parr, W. Yang und Y. Weitao: "Density-functional theory of atoms and molecules", Oxford University Press, 1994: Standardwerk über die theoretischen Grundlagen von DFT
- W. Koch und M. C. Holthausen: "A chemist's guide to density functional theory", Wiley, 2001: gutes, aktuelleres, leichter zugängliches Werk für DFT-Anwender
- D. Young: "Computational chemistry a practical guide ...", Wiley, 2001:
- Kapitel zu allen Themen der Theoretischen Chemie und Computerchemie, aber die meisten davon zu kurz für Erklärungen und manchmal etwas ungenau, am besten brauchbar für einen ersten Eindruck und als Stichwort-Nachschlagewerk; gute Hinweise auf aktuelle Literatur in allen Kapiteln.

Status der Theoretischen Chemie

- grundlegende Theorie bekannt: Quantenmechanik (und ggf. etwas spezielle Relativitätstheorie)
- in der Dynamik: klassische Mechanik oft gute Näherung
- Gültigkeit der Theorie(n) wird nicht angezweifelt
- \bullet für (fast) alle chemisch interessanten Grundgrößen kennt man prinzipielle Berechnungsmethoden
- \Rightarrow eigentliche Probleme der Theoretischen Chemie: Anwendung dieser Theorie(n):
 - exakte (analytische) Lösungen nur für sehr wenige Systeme bekannt (siehe PC-II); ⇒ (numerische) Näherungslösungen nötig; dabei problematisch:
 - extreme Genauigkeitsanforderungen:
 - * Quantenchemie: chemische Bindung (1–200 kJ/mol) ist nur kleine Störung der Kerne-Elektronen-Bindung (100000-1000000 kJ/mol) \Rightarrow max. Fehler ca. $1:10^5$
 - * Reaktionsdynamik: exponentielle Abhängigkeit von der Energie
 - je nach Methode und Zielgrößen ggf. extremer Rechenaufwand:
 - * Quantenchemie: extremer Anstieg des Rechenaufwands mit der Systemgröße bei traditionellen Verfahren $(n^3 e^n)$
 - * Reaktionsdynamik: Berechnung thermodynamischer Größen, Überbrückung extremer Zeitskalenunterschiede
- trotzdem: Die "H+H₂-Ära" ist vorbei! Quantenchemie:
 - Rechnungen mit "chemischer Genauigkeit" heute Routine für chemisch relevante Systeme
 - linear skalierende Verfahren in Entwicklung

Reaktionsdynamik hat noch Entwicklungsrückstand, aber holt auf. \Rightarrow praktische Bedeutung der Theoretischen Chemie wird weiter ansteigen!

Schrödingergleichung:

Die zeitabhängige Schrödingergleichung für ein Teilchen der Masse m in einer Raumdimension x lautet:

$$i\hbar\frac{\partial}{\partial t}\Psi(x,t) = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\Psi(x,t) + V(x)\Psi(x,t) =: \hat{H}\Psi(x,t)$$
(1)

Wenn das Potential V unabhängig von der Zeit ist, kann man die Zeitvariable t mit dem üblichen Separationsansatz

$$\Psi(x,t) = f(t)\psi(x) \tag{2}$$

abseparieren. Man erhält dann

$$f(t) = e^{-iEt/\hbar} \tag{3}$$

und daher

$$\Psi(x,t) = e^{-iEt/\hbar}\psi(x) \tag{4}$$

wobei $\psi(x)$ Eigenfunktion der zeitunabhängigen Schrödingergleichung ist:

$$\hat{H}\psi(x) = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \psi(x) + V(x)\psi(x) = E\psi(x)$$
(5)

Beachte:

- $\psi(x)$ kann o.B.d.A. reell gewählt werden,
- aber auch dann ist $\Psi(x,t)$ i.A. komplex.
- Gl. 5 ist ein Eigenwertproblem des Hamiltonoperators \hat{H} . Die (Eigen-)Energie E ist in jedem Fall reell, weil \hat{H} hermitesch ist. E ergibt sich als Erwartungswert von \hat{H} :

$$E = \frac{\langle \psi | \hat{H} | \psi \rangle}{\langle \psi | \psi \rangle} \tag{6}$$

- Für Wellenfunktionen der Form von Gl. 4 ist die Wahrscheinlichkeitsdichte $|\Psi(x,t)|^2$ zeitunabhängig: *stationärer Zustand* (trotz Bewegung des Teilchens!)
- Gl. 2 ist *nicht* allgemein, sondern ein Spezialfall; i.A. ist das Zeitverhalten von Wellenfunktionen nicht trivial! \Rightarrow Quantendynamik, Vorlesung TC-II
- in der Quantenchemie ist V(x) tatsächlich zeitunabhängig; aber V(x) wird zeitabhängig z.B. bei: Wechselwirkung mit (Laser)Licht, Näherungsmethoden in der Quantendynamik (TDSCF), ...
- Behandlung elektronischer Zustände als stationär (also Verwendung von Gl. 5) ist gerechtfertigt z.B. im elektronischen Grundzustand nahe der Gleichgewichtsgeometrie in Abwesenheit äußerer Felder.

N-Elektronen-Hamiltonoperator

λ.

Die zeitunabhängige Schrödingergleichung für beliebige(!) Moleküle lautet:

$$\hat{H}\Psi^{(k)} = \mathcal{E}_k \Psi^{(k)} \tag{7}$$

mit dem Hamiltonoperator in atomaren Einheiten für N Elektronen und M Atomkerne:

$$\hat{H} = -\sum_{A=1}^{M} \frac{1}{2M_A} \nabla_A^2 \qquad \text{kinetische Energie der Kerne} = \hat{T}_N \tag{8}$$

$$\sum_{i=1}^{N} \frac{1}{2} \nabla_i^2 \qquad \text{kinetische Energie der Elektronen} \tag{9}$$

$$\sum_{j>i}^{N} \frac{1}{r_{ij}} \qquad \text{Coulomb-Abstoßung zwischen Elektronen} \tag{10}$$

$$-\sum_{i=1}^{N}\sum_{A=1}^{M}\frac{Z_{A}}{r_{iA}}$$
 Coulomb-Anziehung Elektronen–Kerne (11)

$$+\sum_{A=1}^{M}\sum_{B>A}^{M}\frac{Z_{A}Z_{B}}{R_{AB}}$$
 Coulomb-Abstoßung zwischen Kernen (12)

Dabei ist r_{ij} der Abstand zwischen Elektron *i* und Elektron *j*, r_{iA} der Abstand zwischen Elektron *i* und Kern *A*, sowie R_{AB} der Abstand zwischen Kern *A* und Kern *B*. Beachte: $r_{ij} = |\mathbf{r}_i - \mathbf{r}_j| = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2}$. Traditionell gilt die Aufteilung $\hat{H} = \hat{T}_N + \hat{H}_{el}$ in Kern- und elektronischen Hamiltonoperator.

Figure 2.1 A molecular coordinate system: i, j = electrons; A, B = nuclei.

Atomare Einheiten (atomic units, a.u.)

Symbol	Physikalische Größe	Wert in a.u.	Wert in SI-Einheiten
m_e	Masse des Elektrons	1	$9.110 \cdot 10^{-31} \text{ kg}$
e	Elementarladung	1	$1.602 \cdot 10^{-19}$ C
\hbar	Impuls $(\hbar = h/2\pi)$	1	$1.055 \cdot 10^{-34}$ Js
h	Plancksches Wirkungsquantum	2π	$6.626 \cdot 10^{-34}$ Js
$4\pi\epsilon_0$	Elektrische Feldkonstante	1	$1.113 \cdot 10^{-10} \ C^2/J \ m$
С	Lichtgeschwindigkeit	137.036	$2.998 \cdot 10^8 \text{ m/s}$
μ_0	Magnetische Feldkonstante $4\pi/c^2$	$6.692 \cdot 10^{-4}$	$1.257 \cdot 10^{-6} \text{ Ns}^2/\text{C}^2$

Vorteile:

- weniger Konstanten in den Gleichungen (keine Faktoren \hbar^2/m_e in der kinetischen Energie, kein $e^2/4\pi\epsilon_0$ in Coulomb-Termen)
- höhere Genauigkeit in numerischen Berechnungen (typische Zwischenresultate variieren nicht über mehrere Dutzend Größenordnungen)
- Resultate unabhängig von Genauigkeit der Maßeinheiten-Bestimmung

Achtung:

- Masse: praktischere Umrechnung: 1 amu = 1 u = $m(^{12}C)/12 = 1822.88734$ m_e
- atomare Längeneineit: 1 bohr = 1 $a_0 = 5.2917742924 \cdot 10^{-11} m = 0.52917742924 Å$
- atomare Energieeinheit: 1 hartree = 1 E_h

Energieumrechnungstabelle:

	cm^{-1}	kJ/mol	kcal/mol	eV	E_h
$1 \text{ cm}^{-1} =$	1.0	$1.196266 \cdot 10^{-2}$	$2.859144 \cdot 10^{-3}$	$1.239852 \cdot 10^{-4}$	$4.556335 \cdot 10^{-6}$
1 kJ/mol =	83.59347	1.0	$2.390057 \cdot 10^{-1}$	$1.036436 \cdot 10^{-2}$	$3.808798 \cdot 10^{-4}$
1 kcal/mol =	349.7551	4.184	1.0	$4.336445 \cdot 10^{-2}$	$1.593601 \cdot 10^{-3}$
1 eV =	8065.479	96.48455	23.06036	1.0	$3.674902 \cdot 10^{-2}$
$1 \mathrm{E}_{h} =$	219474.7	2526.5	627.5095	27.211608	1.0
$1 \mathrm{K} =$	0.695009	0.00831433	0.00198717	$8.61707 \cdot 10^{-5}$	$3.16669 \cdot 10^{-6}$

- für Chemiker: 1 mE_h \approx 3 kJ/mol \approx 0.5 kcal/mol
- für Physiker: 1 $E_h \approx 25 \text{ eV}$
- Chemiker \leftrightarrow Physiker: 1 eV \approx 100 kJ/mol \approx 25 kcal/mol

Born-Oppenheimer-Separation und -Näherung

Die molekulare Schrödingergleichung $\hat{H}\Psi^{(k)} = \mathcal{E}_k \Psi^{(k)}$ kann durch den *adiabatischen Separations*ansatz

$$\Psi^{(k)}(\mathbf{r}, \mathbf{R}) = \sum_{n=1}^{\infty} \psi^{(n)}(\mathbf{r}, \mathbf{R}) \,\chi^{(n,k)}(\mathbf{R})$$
(13)

der Born-Oppenheimer-Separation zerlegt werden in eine rein elektronische Schrödingergleichung

$$\hat{H}_{el}\,\psi^{(n)}(\mathbf{r},\mathbf{R}) = E_n(\mathbf{R})\psi^{(n)}(\mathbf{r},\mathbf{R}) \tag{14}$$

mit nur noch parametrischer Abhängigkeit von den Kernkoordinaten ${\bf R}$ und ein gekoppeltes System von Kern-Schrödingergleichungen

$$[\hat{T}_N + E_m(\mathbf{R})]\chi^{(m,k)}(\mathbf{R}) + \sum_n [2\hat{T}'_{mn}(\mathbf{R}) + \hat{T}''_{mn}(\mathbf{R})]\chi^{(n,k)}(\mathbf{R}) = \mathcal{E}_k\chi^{(m,k)}(\mathbf{R})$$
(15)

bei denen die Elektronenkoordinaten **r** lediglich als Integrationsvariable in den *nicht-adiabatischen Kopplungstermen* $\hat{T}'_{mn}(\mathbf{R})$ und $\hat{T}''_{mn}(\mathbf{R})$ auftauchen und die elektronischen Eigenenergien $E_m(\mathbf{R})$ als Potentialenergiehyperflächen interpretiert werden.

In der *Born-Oppenheimer-Näherung* werden diese Kopplungsterme vernachlässigt, sodaß die Kerndynamik auf voneinander unabhängigen Potentialfläche(n) stattfindet:

$$[\hat{T}_N + E_m(\mathbf{R})]\chi^{(m,k)}(\mathbf{R}) = \mathcal{E}_k\chi^{(m,k)}(\mathbf{R})$$
(16)

Diese Näherung ist i.A. gut im elektronischen Grundzustand nahe der Gleichgewichtsgeometrie, aber schlecht bei Übergangszuständen und bei eng benachbarten oder gar sich kreuzenden elektronischen Zuständen.

Abbildung 1: Einige Potentialflächen $E_m(\mathbf{R})$ von ICN als Funktion des I-CN-Abstands

Orbitale, Hartree-Produkt

- **Definition:** *Orbital* = Wellenfunktion für ein einzelnes Teilchen (Elektron)
- Orbital ψ_n ist Eigenfunktion des Einteilchen-Hamiltonoperators $\hat{h}(i)$ (für Elektron Nr. *i*), mit Orbitalenergie ϵ_n :

$$\hat{h}(i)\psi_n(\mathbf{r}_i) = \epsilon_n \psi_n(\mathbf{r}_i) \tag{17}$$

wobei

$$\hat{h}(i) = -\frac{1}{2}\nabla_i^2 - \sum_{A=1}^M \frac{Z_A}{r_{iA}}$$
(18)

• Für ein System aus N Elektronen ist das einfache Hartree-Produkt

$$\Psi^{HP}(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N) = \psi_k(\mathbf{r}_1)\psi_\ell(\mathbf{r}_2)\cdots\psi_m(\mathbf{r}_N)$$
(19)

Eigenfunktion der Summe der Einteilchen-Hamiltonoperatoren, seine Eigenenergie ist die Summe der Orbitalenergien:

$$\hat{H}^{(0)}\Psi^{HP} = E^{(0)}\Psi^{HP}$$
(20)

$$\hat{H}^{(0)} = \sum_{i=1}^{N} \hat{h}(i) \tag{21}$$

$$E^{(0)} = \epsilon_k + \epsilon_\ell + \dots + \epsilon_m \tag{22}$$

Gesamtenergie $E^{(0)}$ hängt nur von Teilchen*konfiguration* ab, nicht davon, welches Teilchen in welchem Orbital ist.

• Der N-Teilchenoperator $\hat{H}^{(0)}$ entspricht dem elektronischen Anteil des molekularen Hamiltonoperators <u>ohne</u> Elektron-Elektron-Wechselwirkung (und ohne Kern-Kern-Wechselwirkung, die in der Born-Oppenheimer-Separation eine triviale Konstante ist):

$$\hat{H}_{el} = \hat{H}^{(0)} + \sum_{i=1}^{N} \sum_{j>i}^{N} g(i,j)$$
(23)

$$= \sum_{i=1}^{N} \hat{h}(i) + \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{1}{r_{ij}}$$
(24)

$$= -\sum_{i=1}^{N} \frac{1}{2} \nabla_{i}^{2} - \sum_{i=1}^{N} \sum_{A=1}^{M} \frac{Z_{A}}{r_{iA}} + \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{1}{r_{ij}}$$
(25)

Fehler des Hartree-Produkts: Korrelation

Im Hartree-Produkt sind die Elektronen *unkorreliert* (unabhängig voneinander), denn die Gesamt-Wahrscheinlichkeitsdichte ist ein einfaches Produkt der Einzel-Wahrscheinlichkeitsdichten:

$$|\Psi^{HP}(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N)|^2 = |\psi_i(\mathbf{r}_1)|^2 |\psi_j(\mathbf{r}_2)|^2 \cdots |\psi_k(\mathbf{r}_N)|^2$$
(26)

Dieser Defekt bleibt im Folgenden zunächst (teilweise) bestehen!

Fehler des Hartree-Produkts: Ununterscheidbarkeit

Numerierung 1, 2, ..., N der Teilchen ist falsch: Elementarteilchen sind *ununterscheidbar*. Unmittelbare Folgen:

• Gesamtwellenfunktion muß symmetrisch oder antisymmetrisch bezüglich Vertauschung der Teilchennumerierung sein:

$$\Psi(\dots,\mathbf{r}_i,\dots,\mathbf{r}_j,\dots) = \pm \Psi(\dots,\mathbf{r}_j,\dots,\mathbf{r}_i,\dots)$$
(27)

• diese Symmetrie ändert sich nicht mit der Zeit; Klassifizierung:

symmetrisches Ψ	:	Bosonen
antisymmetrisches Ψ	:	Fermionen

• aus relativistischer Quantenfeldtheorie folgt (Pauli 1940): Bosonen haben ganzzahligen Spin, Fermionen halbzahligen.

Nachträgliche Reparatur für Bosonen: Symmetrisierung:

 \bullet addiere alle N! möglichen Permutationen der Numerierung

_

• normiere mit Faktor $1/\sqrt{N!}$

$$\Psi^{HP}(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N) = \frac{1}{\sqrt{N!}} (\psi_i(\mathbf{r}_1)\psi_j(\mathbf{r}_2)\cdots\psi_k(\mathbf{r}_N) + \psi_i(\mathbf{r}_2)\psi_j(\mathbf{r}_1)\cdots\psi_k(\mathbf{r}_N) + \cdots)$$
(28)

$$= \frac{1}{\sqrt{N!}} \left(\psi_i \psi_j \cdots \psi_k + \psi_j \psi_i \cdots \psi_k + \cdots \right)$$
(29)

(Notation in Gl. 29: Reihenfolgenkonvention)

Spin in der nicht-relativistischen Quantenmechanik

• formale Spinkoordinate ω : jedes Teilchen vollständig beschrieben durch 4 Koordinaten:

$$\mathbf{x} = \{\mathbf{r}, \omega\} \tag{30}$$

- formale Spinfunktionen: $\sigma(\omega) = \alpha(\omega)$ oder $\beta(\omega)$ (wichtig: Spin- $\frac{1}{2}$ -Teilchen haben *nur* diese beiden Möglichkeiten!)
- wesentliche Eigenschaften dieser Spinfunktionen:

$$\langle \alpha | \alpha \rangle = \langle \beta | \beta \rangle = 1 \quad , \quad \langle \alpha | \beta \rangle = \langle \beta | \alpha \rangle = 0$$
 (31)

• Spinorbitale:

$$\chi(\mathbf{x}) = \psi(\mathbf{r})\sigma(\omega) = \begin{cases} \psi(\mathbf{r})\alpha(\omega) & \text{oder} \\ \psi(\mathbf{r})\beta(\omega) \end{cases}$$
(32)

• Integration über Spinorbitale bei einem Teilchen:

$$\langle \chi_i | \chi_j \rangle = \int \chi_i^*(\mathbf{x}) \chi_j(\mathbf{x}) d\mathbf{x}$$
 (33)

$$= \int \int \psi_i^*(\mathbf{r}) \sigma_i^*(\omega) \psi_j(\mathbf{r}) \sigma_j(\omega) d\mathbf{r} d\omega$$
(34)

$$= \int \psi_i^*(\mathbf{r})\psi_j(\mathbf{r})d\mathbf{r} \int \sigma_i^*(\omega)\sigma_j(\omega)d\omega$$
(35)

Orthogonalität $\langle \chi_i | \chi_j \rangle = 0$ kann durch Orts- oder Spinanteil alleine zustande kommen!

• Integration über Spinorbitale bei mehreren Teilchen: analog; z.B.: Integration über Spinfunktionen zweier Teilchen (beachte Reihenfolgenkonvention):

$$\langle \alpha \beta | \alpha \beta \rangle = \langle \alpha | \alpha \rangle \langle \beta | \beta \rangle = 1 \tag{36}$$

$$\langle \alpha \beta | \alpha \alpha \rangle = \langle \alpha | \alpha \rangle \langle \beta | \alpha \rangle = 0 \tag{37}$$

Slaterdeterminanten

Gesamtwellenfunktion für N Fermionen: Antisymmetrisierung des Hartree-Produkts der Spinorbitale

- = Linearkombination der Permutationen mit Vorzeichen
 - + für gerade Permutationen
 - für ungerade Permutationen

Das ist nichts anderes als eine Determinante (Slaterdeterminante). Notationen:

$$\Psi(\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{N}) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \chi_{i}(\mathbf{x}_{1}) & \chi_{j}(\mathbf{x}_{1}) & \cdots & \chi_{k}(\mathbf{x}_{1}) \\ \chi_{i}(\mathbf{x}_{2}) & \chi_{j}(\mathbf{x}_{2}) & \cdots & \chi_{k}(\mathbf{x}_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ \chi_{i}(\mathbf{x}_{N}) & \chi_{j}(\mathbf{x}_{N}) & \cdots & \chi_{k}(\mathbf{x}_{N}) \end{vmatrix}$$
(38)

$$= ||\chi_i(\mathbf{x}_1)\chi_j(\mathbf{x}_2)\cdots\chi_k(\mathbf{x}_N)||$$
(39)

$$= |\chi_i(\mathbf{x}_1)\chi_j(\mathbf{x}_2)\cdots\chi_k(\mathbf{x}_N)\rangle_{\mathcal{A}}$$
(40)

$$= |\chi_i(\mathbf{x}_1)\chi_j(\mathbf{x}_2)\cdots\chi_k(\mathbf{x}_N)\rangle \tag{41}$$

$$= |\chi_i \chi_j \cdots \chi_k\rangle \tag{42}$$

- es gibt keine(!) antisymmetrische Spineigenfunktion f
 ür 3 Elektronen, weil Elektronen nur zwei mögliche Spinfunktionen haben
 ⇒ das dritte Elektron muß eine andere Ortsfunktion haben!
- allgemeiner: Pauli-Prinzip: Ein Spinorbital kann nur von einem Elektron besetzt werden (bzw. ein Ortsorbital nur von maximal zwei Elektronen).
 Dies gilt insbes. auch für das energetisch tiefste Orbital im Grundzustand des N-Fermionen-Systems. (vgl.: im Grundzustand eines N-Bosonen-Systems sind alle Teilchen im energetisch tiefsten Orbital)
 ⇒ Periodensystem der Elemente
- eine Slaterdeterminante enthält *Fermi* oder *Austauschkorrelation*: Elektronen mit parallelem Spin sind korreliert, *Fermi-Loch* um jedes Elektron.
- die Slaterdeterminante ist immer noch Eigenfunktion von $\sum_{i=1}^{N} \hat{h}(i)$
- auch wenn $\hat{h}(i)\chi_n(\mathbf{r}_i) = \epsilon_n\chi_n(\mathbf{r}_i)$ nicht gilt (s.u.: Optimierung von χ : Hartree-Fock), ist Ψ Eigenfunktion einer Summe von Einteilchenoperatoren \Rightarrow in einer Slaterdeterminante sind Elektronen mit entgegengesetztem Spin unkorreliert, sie enthält niemals *Coulomb-Korrelation* (kein *Coulomb-Loch*); Ψ in Form einer einzigen Slaterdeterminante kann keine exakte Eigenfunktion des *N*-Teilchen-Hamiltonoperators sein!

Fermi-Loch

Vereinfachtes Beispiel für vorhandenes Fermi-Loch und fehlendes Coulomb-Loch in einer Slaterdeterminante:

Wahrscheinlichkeitsdichte $|\Psi_{\pm}(\mathbf{r}_1, \mathbf{r}_1)|^2$ als Funktion des Elektronenabstands r_{12} , für die Funktionen

$$\Psi_{\pm}(1,2) = \frac{1}{\sqrt{2}} \left\{ 1s(1)2s(2) \pm 2s(1)1s(2) \right\}$$
(43)

(entspricht im wesentlichen dem Ortsanteil der Singulettfunktion (Ψ_+) bzw. der Triplettfunktionen (Ψ_-) des angeregten Helium-Atoms).

$1e^{-}$ - und $2e^{-}$ -Integralnotationen

(auf dieser Seite stehen keine Slaterdeterminanten, nur einfache Produktfunktionen!)

Spinorbitale:

$$[i|h|j] = \langle i|h|j \rangle = \int \chi_i^*(\mathbf{x}_1)\hat{h}(1)\chi_j(\mathbf{x}_1) \, d\mathbf{x}_1 \tag{44}$$

$$\langle ij|k\ell\rangle = \langle \chi_i \chi_j | \chi_k \chi_\ell\rangle = \int \chi_i^*(\mathbf{x}_1) \chi_j^*(\mathbf{x}_2) \frac{1}{r_{12}} \chi_k(\mathbf{x}_1) \chi_\ell(\mathbf{x}_2) \, d\mathbf{x}_1 d\mathbf{x}_2 = [ik|jl] \quad (45)$$

$$[ij|kl] = [\chi_i \chi_j | \chi_k \chi_\ell] = \int \chi_i^*(\mathbf{x}_1) \chi_j(\mathbf{x}_1) \frac{1}{r_{12}} \chi_k^*(\mathbf{x}_2) \chi_\ell(\mathbf{x}_2) \, d\mathbf{x}_1 d\mathbf{x}_2 = \langle ik|j\ell \rangle \quad (46)$$

$$\langle ij||k\ell\rangle = \langle ij|k\ell\rangle - \langle ij|\ell k\rangle = \int \chi_i^*(\mathbf{x}_1)\chi_j^*(\mathbf{x}_2)\frac{1}{r_{12}}(\hat{1} - \hat{\mathcal{P}}_{12})\chi_k(\mathbf{x}_1)\chi_\ell(\mathbf{x}_2)\,d\mathbf{x}_1d\mathbf{x}_2 \quad (47)$$

Ortsorbitale:

$$(i|h|j) = h_{ij} = (\psi_i|h|\psi_j) = \int \psi_i^*(\mathbf{r}_1)\hat{h}(1)\psi_j(\mathbf{r}_1) \,d\mathbf{r}_1$$
(48)

$$(ij|k\ell) = (\psi_i \psi_j | \psi_k \psi_\ell) = \int \psi_i^*(\mathbf{x}_1) \psi_j(\mathbf{x}_1) \frac{1}{r_{12}} \psi_k^*(\mathbf{x}_2) \psi_\ell(\mathbf{x}_2) \, d\mathbf{r}_1 d\mathbf{r}_2 \tag{49}$$

Spezielle Abkürzungen:

$$J_{ij} = (ii|jj)$$
 Coulomb-Integral
 $K_{ij} = (ij|ji)$ Austausch-Integral

Matrixelemente zwischen Slaterdeterminanten: Slater-Condon-Regeln

1e⁻-Operatoren: $\mathcal{O}_1 = \sum_{i=1}^N \hat{h}(i)$

Fall 1: kein Spinorbital Unterschied: $|K\rangle = |\cdots mn \cdots \rangle = |L\rangle$

$$\langle K|\mathcal{O}_1|K\rangle = \sum_{m}^{N} [m|h|m] = \sum_{m}^{N} \langle m|h|m\rangle$$
(50)

Fall 2: ein Spinorbital Unterschied: $|K\rangle = |\cdots mn \cdots \rangle$ $|L\rangle = |\cdots pn \cdots \rangle$

$$\langle K|\mathcal{O}_1|L\rangle = [m|h|p] = \langle m|h|p\rangle$$
 (51)

2e⁻-Operatoren: $\mathcal{O}_2 = \sum_{i=1}^N \sum_{j>i}^N \frac{1}{r_{12}}$

Fall 1: kein Spinorbital Unterschied: $|K\rangle = |\cdots mn \cdots \rangle = |L\rangle$

$$\langle K|\mathcal{O}_2|K\rangle = \frac{1}{2}\sum_{m}^{N}\sum_{n}^{N} \{[mm|nn] - [mn|nm]\} = \frac{1}{2}\sum_{m}^{N}\sum_{n}^{N} \langle mn||mn\rangle$$
 (52)

Fall 2: ein Spinorbital Unterschied: $\begin{array}{c} |K\rangle = |\cdots mn \cdots \rangle \\ |L\rangle = |\cdots pn \cdots \rangle \end{array}$

$$\langle K|\mathcal{O}_2|L\rangle = \sum_{n}^{N} \{[mp|nn] - [mn|np]\} = \sum_{n}^{N} \langle mn||pn\rangle$$
(53)

(54)

Fall 3: zwei Spinorbitale Unterschied: $\begin{aligned} |K\rangle &= |\cdots mn \cdots \rangle \\ |L\rangle &= |\cdots pq \cdots \rangle \\ \langle K|\mathcal{O}_2|L\rangle &= [mp|nq] - [mq|np] = \langle mn| |pq \rangle \end{aligned}$

Alle anderen Fälle ergeben Null!

Energie einer Slaterdeterminante

Mit Slater-Condon-Regeln folgt sofort:

$$E_0 = \langle K | \hat{H}_{el} | K \rangle = \langle K | \mathcal{O}_1 + \mathcal{O}_2 | K \rangle$$
(55)

$$= \sum_{m}^{N} \langle m|h|m\rangle + \frac{1}{2} \sum_{m}^{N} \sum_{n}^{N} \langle mn||mn\rangle$$
(56)

Wegen $\langle mm | |mm \rangle = 0$ und $\langle mn | |mn \rangle = \langle nm | |nm \rangle$ kann man dies auch schreiben als:

$$E_0 = \langle K | \hat{H}_{el} | K \rangle = \sum_{m}^{N} \langle m | h | m \rangle + \sum_{m}^{N} \sum_{n > m}^{N} \langle m n | | m n \rangle$$
(57)

$$= \sum_{m}^{N} [m|h|m] + \sum_{m}^{N} \sum_{n>m}^{N} \{ [mm|nn] - [mn|nm] \}$$
(58)

Da \hat{H}_{el} nicht auf die Spinkoordinaten wirkt, kann die Spinintegration sehr einfach ausgeführt werden. Im Spezialfall

- N/2 Elektronen α -Spin und N/2 Elektronen β -Spin,
- alle Spins gepaart (*closed-shell*),
- gleiche Ortsorbitale für α und β -Elektronen (*restricted*)

führt dies zur closed-shell-restricted-Energie:

$$E_0 = 2\sum_{m}^{N/2} (m|h|m) + \sum_{m}^{N/2} \sum_{n}^{N/2} \left\{ 2(mm|nn) - (mn|nm) \right\}$$
(59)

Man beachte die etwas anderen Vorfaktoren! Die Integrale enthalten hier nur Ortsorbitale, die über Ortskoordinaten integriert werden; die Summen laufen jeweils über die N/2 besetzten Orbitale.

Variationelle Optimierung der Orbitale in Gl. 59 führt zum *closed-shell*-Hartree-Fock-Verfahren, s.u.

Andere Festlegungen über die Spins liefern etwas kompliziertere Energieausdrücken für die Fälle *restricted open-shell* und *unrestricted*. Orbitaloptimierung führt analog zum ROHF-bzw. UHF-Verfahren.

Coulomb- und Austauschintegrale

Interpretation der Terme in Gl. 59:

• Einelektronenintegral über *core-Hamiltonian* $\hat{h}(1)$:

$$(m|h|m) = h_{mm} = \int \psi_m^*(\mathbf{r}_1) \left(-\frac{1}{2} \nabla_1^2 - \sum_A \frac{Z_A}{r_{1A}} \right) \psi_m(\mathbf{r}_1) d\mathbf{r}_1$$
(60)

Erwartungswert der kinetischen und Kern-Anziehungsenergie eines Elektrons in Ortsorbital ψ_m .

• Zweielektronenintegrale: Coulomb-Integral

$$J_{mn} := (mm|nn) = \langle mn|mn \rangle = \iint \psi_m^*(\mathbf{r}_1)\psi_n^*(\mathbf{r}_2)\frac{1}{r_{12}}\psi_m(\mathbf{r}_1)\psi_n(\mathbf{r}_2)d\mathbf{r}_1d\mathbf{r}_2 \quad (61)$$

$$= \int \int |\psi_m(\mathbf{r}_1)|^2 \frac{1}{r_{12}} |\psi_n(\mathbf{r}_2)|^2 d\mathbf{r}_1 d\mathbf{r}_2$$
(62)

klassische Coulomb-Abstoßung zwischen zwei Ladungswolken $|\psi_m(\mathbf{r}_1)|^2$ und $|\psi_n(\mathbf{r}_2)|^2$. Definiere den lokalen *Coulomb-Operator* $\hat{j}_n(1)$ als

$$\hat{j}_n(1)\psi_m(1) = \left\{\int \psi_n^*(\mathbf{r}_2) \frac{1}{r_{12}} \psi_n(\mathbf{r}_2) \, d\mathbf{r}_2 \right\} \psi_m(\mathbf{r}_1) \tag{63}$$

mit Erwartungswert

$$\langle \psi_m | \hat{j}_n | \psi_m \rangle = (mm|nn) \tag{64}$$

• Zweielektronenintegrale: Austausch-Integral

$$K_{mn} := (mn|nm) = \langle mn|nm \rangle = \iint \psi_m^*(\mathbf{r}_1)\psi_n^*(\mathbf{r}_2)\frac{1}{r_{12}}\psi_n(\mathbf{r}_1)\psi_m(\mathbf{r}_2)d\mathbf{r}_1d\mathbf{r}_2 \qquad (65)$$

$$= \int \int \psi_m^*(\mathbf{r}_1) \psi_n^*(\mathbf{r}_2) \frac{1}{r_{12}} \hat{\mathcal{P}}_{12} \psi_m(\mathbf{r}_1) \psi_n(\mathbf{r}_2) d\mathbf{r}_1 d\mathbf{r}_2$$
(66)

aus Antisymmetrisierung und Spin 1/2, keine klassische Interpretation. Definiere den nicht-lokalen Austausch-Operator $\hat{k}_n(1)$ als

$$\hat{k}_n(1)\psi_m(1) = \left\{\int \psi_n^*(\mathbf{r}_2) \frac{1}{r_{12}} \psi_m(\mathbf{r}_2) \, d\mathbf{r}_2 \right\} \psi_n(\mathbf{r}_1) \tag{67}$$

mit Erwartungswert

$$\langle \psi_m | \hat{k}_n | \psi_m \rangle = (mn|nm) \tag{68}$$

Damit können wir Gl. 59 schreiben als:

$$E_0 = 2\sum_{m}^{N/2} h_{mm} + \sum_{m}^{N/2} \sum_{n}^{N/2} \{2J_{mn} - K_{mn}\}$$
(69)

Einfache Ermittlung der Energie einer Slaterdeterminante

Die Gesamtenergie ist die Summe aus diesen Beiträgen:

- Unabhängig von seinem Spin trägt jedes Elektron im Ortsorbital ψ_i einen Term $+h_{ii}$ bei.
- Jedes Elektronenpaar in den Ortsorbitalen ψ_i und ψ_j trägt unabhängig von den Spins einen Term $+J_{ij}$ bei.
- Jedes solche Elektronenpaar mit parallelem Spin trägt einen Term $-K_{ij}$ zusätzlich bei.

Beachte dabei:

- die Reihenfolge der Elektronen ist irrelevant, die Paare (12) und (21) werden also nur als ein Paar gezählt;
- für diese Regeln ist es egal, ob die Ortsorbitale gleich (i = j) oder unterschiedlich $(i \neq j)$ sind.

Bitte keine allzu wörtlichen Interpretationen:

Eine einzelne Slaterdeterminante ist *keine* (exakte) Lösung der N-Teilchen-Schrödingergleichung (keine exakte Eigenfunktion von \hat{H}_{el}). \Rightarrow Die von K_{ij} repräsentierte "Austausch-Wechselwirkung" ist in diesem Sinne kein vollständig korrektes Abbild der physikalischen Wechselwirkung. Korrekt ist der (spinunabhängige!) $1/r_{12}$ -Operator in \hat{H}_{el} und der Spin-1/2-Charakter der Elektronen.

Warum Hartree-Fock?

Eigentlich haben wir an dieser Stelle bereits alle Zutaten für quantenchemische Berechnungen:

- \hat{H}_{el} ist bekannt (sogar exakt);
- Slater
determinante als (approximativer) Ansatz für Ψ ;
- expliziter Ausdruck für $E = \langle \Psi | \hat{H}_{el} | \Psi \rangle$ in Einteilchen-Orbitalen ψ hergeleitet;
- Vorschrift $\hat{h}\psi_n = \epsilon_n \psi_n$ für die Berechnung von ψ .

Warum wird dieses Verfahren nicht angewendet?

• Lösung von

$$\hat{h}(i)\psi_n(\mathbf{r}_i) = \epsilon_n \psi_n(\mathbf{r}_i) \tag{70}$$

ist *nicht* trivial!

• Gl. 70 ist eine strikte Einteilchen-Gleichung, Elektron i "sieht" darin kein anderes Elektron, noch nicht einmal in Form eines Mittelwerts. \Rightarrow diese Orbitale (und damit die Slaterdeterminante) sind mit Sicherheit eine schlechte Approximation!

 \Rightarrow Grundidee von Hartree-Fock: Bestimme Orbitale ψ nicht durch Lösung von Gl. 70, sondern durch variationsmäßige Optimierung der Orbitale ψ via Minimierung von

$$E = \langle \Psi | \hat{H}_{el} | \Psi \rangle \tag{71}$$

Vorteile:

- Gl. 71 enthält via \hat{H}_{el} und $1/r_{12}$ die Wechselwirkung der Elektronen \Rightarrow die Einteilchenorbitale werden für die N-Teilchen-Situation optimiert;
- dadurch "sieht" jedes Elektronen wenigstens ein "gemitteltes Feld" der anderen Elektronen (s.u.);
- Ermittlung der Orbitale ψ als Lösung von Einteilchengleichungen und Optimierung dieser Orbitale kann simultan erfolgen (s.u.);
- optimierte Energie ist obere Schranke für exakte Energie (Variationsprinzip).

Nachteile:

- statt entkoppelten Einteilchengleichungen haben wir gekoppelte;
- diese sind nicht-linear und
- hängen von ihren eigenen Lösungen ab \Rightarrow iteratives Lösungsverfahren nötig (s.u.)

closed-shell-Hartree-Fock-Gleichungen

Minimierung der Energie einer Slaterdeterminante im closed-shell-restricted-Fall

$$E_0 = 2\sum_{m}^{N/2} (m|h|m) + \sum_{m}^{N/2} \sum_{n}^{N/2} \left\{ 2(mm|nn) - (mn|nm) \right\}$$
(72)

durch Variation der Ortsorbitale ψ_m liefert mit der Definition des Fock-Operators

$$\hat{f}(1) = \hat{h}(1) + \sum_{n} \{2\hat{j}_{n}(1) - \hat{k}_{n}(1)\}$$
(73)

nach einigen technischen Tricks letztlich die Hartree-Fock-Gleichungen:

$$\hat{f}|\psi_m\rangle = \epsilon_m |\psi_m\rangle \tag{74}$$

Deren Lösungen sind die optimierten Orbitale ψ_m als Eigenfunktionen des Fock-Operators mit den dazugehörigen Eigenenergien als *Orbitalenergien*:

$$\epsilon_m = \langle \psi_m | \hat{f} | \psi_m \rangle \tag{75}$$

Beachte:

- Orbitale sind nur Hilfsgrößen, trotzdem haben die Orbitalenergien eine gewisse Bedeutung: Koopmans' Theorem (s.u.)
- Orbitale sind nicht eindeutig, sie können beliebig unitär transformiert werden: Lokalisierung
- Gl. 74 sieht aus wie eine einfache Eigenwertgleichung eines linearen Operators, aber \hat{f} hängt über \hat{j} und \hat{k} von seinen eigenen Eigenfunktionen ab und ist daher nicht-linear. \Rightarrow iterative Lösung nötig! (s.u.)
- Gl. 74 ist zwar eine Einteilchengleichung, aber eine effektive: In \hat{f} ist der exakte WW-Term $1/r_{12}$ ersetzt durch mittelwertartige WW mit allen anderen Teilchen via \hat{j} und \hat{k} (s.o.: Coulomb- und Austauschterme)
- in Gl. 73 müßte eigentlich über $n \neq m$ summiert werden, da (mm|mm) eine unphysikalische *Elektron-Selbstwechselwirkung* darstellt. Per Definition gilt jedoch

$$\left[\hat{j}_m - \hat{k}_m\right]\psi_m = 0 \tag{76}$$

so daß dieser Term schadlos in der Summe erscheinen kann. Dieses hier lediglich technische Detail ist ein echtes Problem in der Dichtefunktionaltheorie: Nur *exakter* Austausch hebt die Elektron-Selbstwechselwirkung exakt auf.

Der Hartree-Fock-Hamiltonoperator

Im HF-Verfahren haben wir $\hat{H}_{el}\Psi = \mathcal{E}\Psi$ nicht exakt gelöst:

- \hat{H}_{el} ist exakt, aber
- Ψ ist approximativ, da eine einzelne Slaterdeterminante.

Andere, aber äquivalente Sicht der Dinge:

- Ψ ist eine Slaterdeterminante und daher *exakte* Eigenfunktion
- eines approximativen Gesamt-Hamiltonoperators \hat{H}_0 , der eine Summe von Einteilchenoperatoren sein muß.

Dieser approximative Operator ist der Hartree-Fock-Operator:

$$\hat{H}_0 = 2\sum_{i=1}^{N/2} \hat{f}(i) \tag{77}$$

und es gilt exakt:

$$\hat{H}_0 \Psi = E^{(0)} \Psi$$
 mit $E^{(0)} = 2 \sum_{i=1}^{N/2} \epsilon_i$ (78)

Diese Energie nullter Ordnung ist also die Summe der Orbitalenergien, sie ist aber nicht identisch zur im Hartree-Fock-Verfahren ermittelten (ebenfalls approximativen) Gesamtenergie E: Nach den Slater-Condon-Regeln gilt:

$$E = 2\sum_{i}^{N/2} h_{ii} + \sum_{i}^{N/2} \sum_{j}^{N/2} \{2J_{ij} - K_{ij}\}$$
(79)

Die Orbitalenergie ϵ_i ergibt sich jedoch als Erwartungswert des Fock-Operators für das Orbital ψ_i , und damit gilt:

$$E^{(0)} = 2\sum_{i=1}^{N/2} \left\{ h_{ii} + \sum_{j}^{N/2} (2J_{ij} - K_{ij}) \right\} = 2\sum_{i}^{N/2} h_{ii} + 2\sum_{i}^{N/2} \sum_{j}^{N/2} \{2J_{ij} - K_{ij}\}$$
(80)

Wir haben also:

$$E = E^{(0)} + E^{(1)} = E^{(0)} - \sum_{i}^{N/2} \sum_{j}^{N/2} \{2J_{ij} - K_{ij}\}$$
(81)

Diese Energie $E^{(1)}$ erster Ordnung korrigiert formal die Doppelzählung der Elektron-Elektron-WW in $E^{(0)}$.

Störungstheorien (s.u.) ermitteln $E^{(2)}$ und weitere additive Korrekturen höherer Ordnung, mit Hoffnung auf Konvergenz dieser Reihe zur exakten Energie \mathcal{E} .

Die LCAO-Näherung

Lösungsverfahrenen für die HF-Gleichungen:

- analytisch: nicht möglich
- numerische Integration: nicht Standard
- Basisfunktionsentwicklung: LCAO-Roothaan-Gleichungen

Die (Molekül-) Orbitale ψ_i werden in Basisfunktionen entwickelt:

$$|\psi_i\rangle = \sum_{\nu=1}^{K} C_{\nu i} |\phi_\nu\rangle \tag{82}$$

Die Basisfunktionen sind typischerweise nicht orthogonal:

$$S_{\mu\nu} = \langle \phi_{\mu} | \phi_{\nu} \rangle = \int \phi_{\mu}(\mathbf{r}_{1}) \phi_{\nu}(\mathbf{r}_{1}) \, d\mathbf{r}_{1} \neq \delta_{\mu\nu} \tag{83}$$

Einsetzen der Basisentwicklung in Gl. 74 liefert:

$$\hat{f}\sum_{\nu} C_{\nu i} |\phi_{\nu}\rangle = \epsilon_{i} \sum_{\nu} C_{\nu i} |\phi_{\nu}\rangle \tag{84}$$

Nach Multiplikation von links mit $\langle \phi_{\mu} |$ ergibt sich:

$$\sum_{\nu} C_{\nu i} \langle \phi_{\mu} | \hat{f} | \phi_{\nu} \rangle = \epsilon_{i} \sum_{\nu} C_{\nu i} \langle \phi_{\mu} | \phi_{\nu} \rangle \tag{85}$$

was zu folgender Matrix-Gleichung äquivalent ist:

$$FC = SC\epsilon \tag{86}$$

Die Matrix ϵ ist eine Diagonalmatrix der Orbitalenergien. Die Fock-Matrix F ist gemäß Definition des Fock-Operators:

$$F_{\mu\nu} = h_{\mu\nu} + \sum_{k} \left\{ 2(\mu\nu|kk) - (\mu k|k\nu) \right\}$$
(87)

Durch erneutes Einsetzen der Basisentwicklung für ψ_k erhalten wir einen Ausdruck für die Fock-Matrix in der AO-Basis:

$$F_{\mu\nu} = h_{\mu\nu} + \sum_{k} \sum_{\rho\sigma} C_{\rho k} C_{\sigma k} \left\{ 2(\mu\nu|\rho\sigma) - (\mu\sigma|\rho\nu) \right\}$$
(88)

$$= h_{\mu\nu} + \sum_{\rho\sigma} D_{\rho\sigma} \left\{ (\mu\nu|\rho\sigma) - \frac{1}{2}(\mu\sigma|\rho\nu) \right\} = h_{\mu\nu} + G_{\mu\nu}$$
(89)

Dabei haben wir die *Dichtematrix* \mathbf{D} definiert:

$$D_{\mu\nu} = 2\sum_{k=1}^{N/2} C_{\mu k} C_{\nu k}$$
(90)

die mit der (Ein-)Elektronendichte in Zusammenhang steht und bei der Berechnung von Moleküleigenschaften verwendet werden kann (s.u.).

Orthogonalisierung der Basis

Die Gleichung $FC = SC\epsilon$ ist ein verallgemeinertes Eigenwertproblem. Wir können es in eine normales Eigenwertproblem transformieren, indem wir die Basis mit einer geeigneten Transformationsmatrix X orthogonalisieren:

$$X^{\dagger}SX = 1 \tag{91}$$

Da S hermitesch (symmetrisch) ist, ist X unitär.

Es gibt verschiedene Möglichkeiten für die Wahl von X, eine ist:

$$X = S^{-1/2} = U s^{-1/2} U^{\dagger}$$
(92)

denn dann gilt:

$$X^{\dagger}SX = S^{-1/2}SS^{-1/2} = S^{-1/2}S^{1/2} = S^{0} = 1$$
 (93)

Durch diese Transformation X erhalten wir auch eine neue Koeffizientenmatrix:

$$C' = X^{-1}C \quad \Leftrightarrow \quad C = XC'$$

$$\tag{94}$$

Einsetzen von C = XC' in $FC = SC\epsilon$ liefert:

$$FXC' = SXC'\epsilon \tag{95}$$

Multiplikation von links mit X^{\dagger} ergibt:

$$X^{\dagger}FXC' = X^{\dagger}SXC'\epsilon \tag{96}$$

Dabei definiert $X^{\dagger}FX = F'$ die entsprechend transformierte Fock-Matrix. Mit Gl. 91 ergibt sich schließlich unter Verzicht auf die Striche ein Standard-Eigenwertproblem:

$$FC = C\epsilon \tag{97}$$

Ablauf einer Hartree-Fock-Rechnung

- 1. spezifiziere
 - Molekülzusammensetzung (Elementsymbole $\Rightarrow \{Z_A\}$)
 - Molekülstruktur (Kernkoordinaten $\{\mathbf{R}_A\}$)
 - Anzahl Elektronen (ggf. Spin(eigen)zustand, Besetzung)
 - Basissatz
- 2. berechne AO-Integrale: $S_{\mu\nu}$, $h_{\mu\nu}$, $(\mu\nu|\rho\sigma)$
- 3. diagonalisiere Überlappungsmatrix $S \Rightarrow$ Transformationsmatrix X
- 4. "rate" Anfangswerte für Dichtematrix D
- 5. berechne Matrix **G** aus Dichtematrix **D** und Zweielektronenintegralen $(\mu\nu|\rho\sigma)$
- 6. stelle Fock-Matrix auf: $\mathbf{F} = \mathbf{h} + \mathbf{G}$
- 7. transformiere Fock-Matrix in die Orthogonalbasis: $F' = X^{\dagger}FX$
- 8. diagonalisiere $F' \Rightarrow$ Eigenwerte ϵ und Eigenvektoren C'
- 9. transformiere Koeffizientenmatrix zurück: C = XC', und berechne neue Dichtematrix D aus C
- 10. teste Konvergenz; Kriterien: Änderung in Energie, Dichtematrix, ...; wenn nicht erfüllt, gehe zu Schritt 5
- 11. Ausgabe der Ergebnisse, Berechnung von Moleküleigenschaften, usw.

Technische Details

Struktureingabe

- Z-Matrix
- kartesische Koordinaten
- graphische Oberfläche

Anfangswerte für Dichtematrix

- core- \hat{H} (**F** = **h** bzw. **G** = **0**): immer möglich, aber schlecht
- EHT: quasi-Standard
- INDO,...: besser, aber SCF-artig \Rightarrow kann divergieren
- Resultat aus vorheriger Rechnung (z.B. mit kleinerem Basissatz)

Diagonalisierung der Fock-Matrix

formal ein mit N^3 skalierender Schritt \Rightarrow früher gegenüber Integralberechnung unwichtig.

heute: Integralberechnung kann linear~skalierendausgeführt werden \Rightarrow Diagonalisierung wird geschwindigkeitsbestimmend.

Ausweg: Diagonalisierung der Fock-Matrix wird ersetzt durch direkte Optimierung der Einelektronen-Dichtematrix \Rightarrow linear skalierendes Hartree-Fock-Verfahren, anwendbar für große Moleküle.

Integralberechnung

Prinzipielle Berechnungsstrategie:

- extensive Verwendung der bekannten Eigenschaften der Basisfunktionen und Operatoren
- Rekursionen auf einfachere Integrale
- möglichst weitgehende analytische Manipulationen, bis numerisch zu berechnender Rest sehr klein.

Schließlich sind

- einzelne Integrale sehr schnell und einfach berechenbar
- viele Integrale "gleichzeitig" effizient berechenbar.

Verbleibendes Problem: Anzahl der Integrale $(N^4/8$ Zweielektronenintegrale):

100	Basisfunktionen	\Rightarrow	100 MByte
500	Basisfunktionen	\Rightarrow	60 GByte

Optionen:

- *in-core*: Limit ca. 150 Basisfunktionen
- Speicherung auf Festplatte: logistisch nicht-trivial, I/O-speed
- (integral-)direct: keine Begrenzung (außer CPU-Zeit)
- semi-direct: Kombinationsverfahren

Weitere Einsparmöglichkeit: *integral screening* z.B. mit Schwarzscher Ungleichung:

$$|\langle \mu\nu|\rho\sigma\rangle| \le \sqrt{\langle \mu\mu|\rho\rho\rangle}\sqrt{\langle \nu\nu|\sigma\sigma\rangle}$$
(98)

Wichtig: mit effizientem screening nur noch N^2 Integrale zu berechnen!

Die meisten dieser Integrale entsprechen klassischen WW zwischen weit entfernten Ladungen \Rightarrow können mit Fast-Multipole-Methode (FMM) berechnet werden \Rightarrow linear scaling !

Bewältigung von Konvergenzproblemen

- wähle anderen *starting guess*, s.o.!
- Extrapolation: ad-hoc-Vorschriften zur Erzeugung neuer Dichte- oder Fock-Matrizen aus den Matrizen der vorigen Iterationen
- Dämpfung: bei Oszillationen wird über die Dichtematrizen der beiden vorigen Iterationen gemittelt
- level-shifting:

exzessive Mischungen von besetzten und virtuellen Orbitalen werden durch Anhebung der Energie der letzteren reduziert; große shifts verbessern die Konvergenz bis hin zur Garantie, aber machen sie auch langsamer

- direct inversion of the iterative subspace (DIIS): neue Fock- bzw. Dichtematrix als optimale Linearkombination der Matrizen der vorherigen *n* Iterationen, durch Minimierung eines geeignet definierten Fehlers; defacto-Standard
- quadratisch-konvergentes SCF bzw. Newton-Verfahren:

nach einer Umformulierung der Theorie (erste und zweite Ableitungen der Energie nach sog. Orbital-Rotations-Parametern) kann man die Energie mit Standardverfahren minimieren, z.B. conjugate-gradients oder (quasi-)Newton(-Raphson) \Rightarrow weniger, aber teurere Iterationsschritte; sofortige Anwendung weit weg vom Minimum ggf. problematisch, aber Konvergenz in Minimum-Nähe quadratisch.

Table 10.4 Convergence of Hartree–Fock calculations on the water molecule in the cc-pVQZ basis using the standard SCF method, the DIIS method and the Newton trust-region method. For each iteration, we have listed the energy relative to the converged energy in E_h . The calculations have been carried out at the geometries R_{ref} and $2R_{ref}$ of Section 5.3.3

	<u></u>	R _{ref}			2R _{ref}		
	SCF	DIIS	Newton	SCF	DIIS	Newton	
1	16.00647	16.00647	16.00647	16.49326	16.49326	16.49326	
2	9.58984	9.58984	8.88965	12.73424	12.73427	7.88928	
3	4.61743	4.64733	4.96737	6.52430	1.07245	4.56122	
4	5.07608	0.31858	3.44710	12.31403	2.75895	3.37801	
5	2.72273	0.02346	1.00855	6.40243	0.12441	2.44947	
6	2.95707	0.01010	0.11676	12.28473	0.26336	1.99168	
7	1.60597	0.00005	0.00078	6.39597	0.00887	0.61365	
8	1.10266	0.00000	0.00000	12.28278	0.00202	0.07316	
9	0.53622			6.34555	0.00035	0.01495	
10	0.27230			12.28263	0.00018	0.00140	
11	0.12028			6.39553	0.00014	0.00005	
12	0.05426			12.28264	0.00010	0.00000	
13	0.02324			6.39552	0.00005		
14	0.01010			12.28264	0.00001		
15	0.00431			6.39552	0.00000		
16	0.00185			12.28264			
17	0.00079			6.39552			
18	0.00034			12.28264			
19	0.00015			6.39552			
20	0.00006			12.28264			
21	0.00003						
22	0.00001						
23	0.00000						

Basisfunktionen: Einleitung

Exakte Wellenfunktion von H₂ bei unendlichem Kernabstand $R = \infty$:

$$\Psi(1,2) = \frac{1}{\sqrt{2}} \left\{ |1s_A \alpha \, 1s_B \beta\rangle + |1s_B \alpha \, 1s_A \beta\rangle \right\}$$
(99)

mit Wasserstoffatom-1s-Orbitalen $(1/\pi)^{1/2}e^{-r}$ an Kern A bzw. B. Daraus "folgt": *Slater-Funktionen* (STOs) scheinen gute Basisfunktionen zu sein:

$$r^{n-1}e^{-\zeta r}Y_{lm}(\theta,\phi) \tag{100}$$

Bei endlichen Kernabständen ist die Wellenfunktion von H₂ komplizierter. Die Form von Gl. 99 liefert nur 67% der experimentellen Dissoziationsenergie D_e .

Wichtigster Effekt bei Bindungsbildung: Änderung der Größe der 1s-Orbitale. Übergang von $\zeta = 1$ zu variationell optimiertem ζ liefert 80% von D_e bei $\zeta = 1.17$.

Alternative: Linearkombination zweier 1s-Funktionen mit unterschiedlichen Werten für ζ :

$$\chi_{1s} = c_1 1 s(\zeta_1) + c_2 1 s(\zeta_2) \tag{101}$$

Mit hinreichend vernünftigen, *festen* Werten für die nichtlinearen Parameter ζ_1 und ζ_2 muß man nur noch die linearen Parameter c_1 und c_2 optimieren und erhält trotzdem gute Ergebnisse, z.B.: knapp 80% von D_e bei fester Wahl $\zeta_1 = 1.0$ und $\zeta_2 = 1.5$ und optimierten Werten $c_1 = 0.663$ und $c_2 = 0.351$.

Weiterer wichtiger Effekt: Erhöhung der Ladungsdichte in der Bindungsregion: *Polarisierung*. Kann durch geeignete höhere Winkelfunktionen simuliert werden, z.B.:

$$\chi_{1s} = c_1 1 s(\zeta_s) + c_2 2p\sigma(\zeta_p) \tag{102}$$

Optimierung der Parameter liefert bei $\zeta_s = 1.19$ und $\zeta_p = 2.38$ an der Stelle $c_1 = 0.995$ und $c_2 = 0.100$ etwa 85% von D_e .

Achtung: Selbst mit viel allgemeineren Funktionen anstelle solcher STOs erreicht man maximal 87% von D_e : Grenze des Ansatzes Gl. 99. Weitere Verbesserungen nur durch Korrelationsmethoden!

Basisfunktionen: Gauß-Funktionen

Zur Aufstellung der Fock-Matrix braucht man Zweielektronenintegrale

$$(\mu_A \nu_B | \rho_C \sigma_D) = \int d\mathbf{r}_1 d\mathbf{r}_2 \chi_{\mu}^{A^*}(\mathbf{r}_1) \chi_{\nu}^B(\mathbf{r}_1) r_{12}^{-1} \chi_{\rho}^{C^*}(\mathbf{r}_2) \chi_{\sigma}^D(\mathbf{r}_2)$$
(103)

dabei ist χ^A_{μ} eine Basisfunktion, die am Ort \mathbf{R}_A des Kerns A zentriert ist. Problematisch:

- nicht-triviales 4-Zentren-Integral,
- notorisch schwierig in STOs,
- bei N Basisfunktionen braucht man $N^4/8$ dieser Integrale.

Alternative: kartesische Gaußfunktionen (GTOs):

$$\chi_{\mu}^{A}(\mathbf{R}_{A}) = (x - x_{A})^{i} (y - y_{A})^{j} (z - z_{A})^{k} e^{-\alpha_{\mu}(\mathbf{r} - \mathbf{R}_{A})^{2}}$$
(104)

Berechnung durch viele rechnerische Vorteile um ca. Faktor 10 schneller, u.a.:

- Produkt von zwei Gaußfunktionen ist eine Gaußfunktion \Rightarrow 4-Zentren \rightarrow 2-Zentren
- Faktorisierung in x-, y- und z-Anteil
- Zusammenhang mit Fehlerfunktion

Nachteil: funktionale Form eigentlich schlechter \Rightarrow mehr GTOs nötig.

	Slater	Gauß		
r = 0	cusp	Steigung Null		
$r \to \infty$	theoret. korrekt	klingt zu schnell ab		

Trotzdem werden fast ausschließlich GTOs verwendet:

- Rechenzeitvorteil ist groß
- cusp wichtig für Absolutenergien, aber weniger wichtig für Relativenergien
- Überlappung weniger wichtig für intermolekulare WW; Induktion und Dispersion wichtiger, diese o.k. mit GTOs

Kontraktionen:

Weitere Rechenzeitreduktion: Erzeugung der eigentlichen Basisfunktionen (AOs) durch feste Linearkombinationen von GTOs ("primitives"):

$$\tilde{\chi}(\mathbf{R}_A) = \sum_{n=1}^{L} d_n \, \chi^A_{\mu_n}(\mathbf{R}_A) \tag{105}$$

Die Kontraktionslänge L sowie die Kontraktionskoeffizienten d_n und -exponenten α_{μ_n} werden vor der eigentlichen Rechnung bestimmt und dann konstant gehalten. Dadurch:

- keine Reduktion der Anzahl der Integrale, da diese als Summe von Integralen über GTOs gerechnet werden; aber
- Reduktion der Größe der Fock-Matrix.

Üblicherweise werden GTOs in der core-Region kontrahiert, weil core wenig an Bindungsbildung beteiligt \Rightarrow dort sind die in Rechnungen an Atomen bestimmten Kontraktionen eine gute Näherung.

effective core potentials (ECP): siehe TC-II

Erzeugung von Basissätzen:

Veraltet: least-squares-Anpassung einiger GTOs an ein STO, z.B. STO-3G:

Standard: Optimierung der Exponenten (und Kontraktionskoeffizienten = SCF-Koeffizienten der primitiven Funktionen) in atomaren HF-Rechnungen.

Wichtig: Basis muß flexibel genug sein, um die veränderte Situation im Molekül abzudecken!

Basissätze: Notation und Beispiele

- minimal basis: Anzahl Funktionen = Anzahl besetzte Orbitale; für echte Rechnungen immer zu klein
- Huzinaga-Basen: z.B. (9s5p) für das C-Atom:

Exponents	1 <i>s</i>	2 <i>s</i>	2 <i>p</i>
4232.61	0.00122	0.00026	
634.882	0.00934	-0.00202	
146.097	0.04534	-0.00974	
42.4974	0.15459	-0.03606	
14.1892	0.35867	-0.08938	
5.1477	0.43809	-0.17699	
1.9666	0.14581	-0.05267	
0.4962	0.00199	0.57408	
0.1533	0.00041	0.54768	
18.1557			0.01469
3.9864			0.09150
1.1429			0.30611
0.3594			0.50734
0.1146			0.31735

Table 8.2 The Gaussian (9s5p) exponents and expansion coefficients for the ³P ground-state carbon orbitals

• Dunning-Kontraktionen der Huzinaga-Basen: z.B. (9s5p)/[4s2p] für das C-Atom:

Exponents	[3s]	[4s]	[5s]	[2 <i>p</i>]	[3 <i>p</i>]
Exponents 4232.61 634.882 146.097 42.4974 14.1892 1.9666 5.1477 0.4962	[3s] 0.002029 0.015535 0.075411 0.257121 0.596555 0.242517 1.000000 0.542048	[4s] 0.002029 0.015535 0.075411 0.257121 0.596555 0.242517 1.000000 1.000000	[5s] 0.006228 0.047676 0.231439 0.789108 0.791751 0.321870 1.000000 1.000000	[2 <i>p</i>]	[3 p]
0.1533 18.1557 3.9864 1.1429 0.3594 0.1146	0.517121	1.000000	1.000000	0.018534 0.115442 0.386206 <u>0.640089</u> 1.000000	0.039196 0.244144 <u>0.816775</u> <u>1.000000</u> 1.000000

Table 8.3 Dunning's segmented contractions of the Huzinaga carbon (9s5p) basis

Beispiel: Energie von H₂O auf HF-SCF-Niveau

unkontrahierte	Basis $(9s5p/4s)$	(32 Funktionen)	-76.0133 E_h	
kontrahierte Basis	(9s5p/4s)/[3s2p/2s]	(13 Funktionen)	$-76.0080 \ E_h$	Fehler 0.007%

- double-zeta: zwei STOs bzw. kontrahierte AOs mit verschiedenem Exponenten ζ für mehr Flexibilität bei Bindungsbildung (siehe Einleitung) split-valence oder valence double-zeta (VDZ): double-zeta nur im Valenzbereich
- Pople-Basen: z.B. 6-31G

Table 8.4 The 6-31G carbon basis set. For molecular applications, the outer valence exponents should be uniformly scaled by a factor of $1.04^2 = 1.0816$

Exponents	1s	2 <i>s</i>	2 <i>p</i>
3047.52	0.00183474		,
457.37	0.0140373		
103.949	0.0688426		
29.2102	0.232184		
9.28666	0.467941		
3.16393	0.362312		
7.86827		-0.119332	0.0689991
1.88129		-0.160854	0.316424
0.544249		1.14346	0.744308
0.168714		1.0000	1.0000

- mehr ζ-Werte (VDZ, VTZ, VQZ, ...) erhöhen die radiale Flexibilität, aber das reicht nicht: z.B. ist NH₃ im Limit vieler s- und p-Funktionen planar!
 ⇒ höhere Winkelfunktionen (d,f,g,...; Polarisationsfunktionen) erhöhen die Winkel-Flexibilität:
 z.B. DZP, pVDZ, 6-31G(d) = 6-31G*, 6-31G(d,p) = 6-31G**, ...
- Basissatz-Balance: Artefakte können sowohl durch zu wenige als auch durch zu viele Polarisationsfunktionen entstehen; Faustregel: $n \leq m - 1$, wenn m Funktionen eines Typs und n nächsthöhere Winkelfunktionen vorhanden sind.
- Anionen und angeregte Zustände sind diffuser \Rightarrow Erweiterung um räumlich diffusere Funktionen nötig: augmented, aug, 6-31+G, 6-31++G, ...

- "korrelationskonsistene" Basen von Dunning: cc-pVXZ, mit Kardinalzahl $X = 2,3,4,5,6,\ldots = D,T,Q,5,6,\ldots$:
 - s- und p-Funktionen werden nach bestimmten Kriterien ausgewählt und kontrahiert, dann reicht eine Optimierung auf HF-Niveau,
 - d,f,g,...-Polarisationsfunktionen werden auf korreliertem Niveau optimiert und in Gruppen zu den (s,p)-Sätzen hinzugefügt,
 - alle diese Beiträge bringen etwa dieselbe Korrelationsenergieerniedrigung:
 - cc-pVDZ = (9s5p1d)/[3s2p1d] = (2s1p)-Minimalbasis + (1s1p) + (1d)
 - cc-pVTZ = (10s5p2d1f)/[4s3p2d1f] = cc-pVDZ + (1s1p) + (1d) + (1f)
 - cc-pVQZ = (12s6p3d2f1g)/[5s4p3d2f1g] = cc-pVTZ + (1s1p) + (1d) + (1f) + (1g)
 - ...
 - Erweiterung um diffuse Funktionen: aug-cc-pVDZ usw.
- Beispiele für Basissatz-Konvergenz auf HF-Niveau:

Table 8.16 The basis-set convergence in Hartree–Fock calculations on Ne, N_2 and H_2O . For the electronic energy, the errors relative to the Hartree–Fock limit at the experimental equilibrium geometry are listed (in mE_h). For the molecular structures of N_2 and H_2O , the calculated bond distances (in pm) and bond angle (in degrees) are listed

		$\Delta E_{\rm HF}$		Geom	netrical para	meters
Basis set	Ne ^a	N ₂ ^b	H ₂ O ^c	R _{NN}	R _{OH}	$\theta_{\rm HOH}$
STO-3G	1942.57	1497.29	1104.47	146.82	98.94	100.03
6-31G 6-31IG 6-31G* 6-31G* 6-31G** 6-311G**	73.22 24.54 73.22 73.22 24.54	125.43 99.02 51.32 51.32 23.76	83.40 58.01 58.27 44.75 20.95	108.91 108.60 107.81 107.81 107.03	94.96 94.54 94.76 94.27 94.10	111.55 111.88 105.58 106.05 105.46
cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z	58.32 15.23 3.62 0.32	39.06 9.72 2.11 0.43	40.60 10.23 2.57 0.31	107.73 106.71 106.56 106.54	94.63 94.06 93.96 93.96	104.61 106.00 106.22 106.33
cc-pCVDZ cc-pCVTZ cc-pCVQZ cc-pCV5Z	58.17 15.14 3.52 0.32	38.27 8.79 1.88 0.36	40.20 10.04 2.45 0.30	107.65 106.60 106.55 106.54	94.60 94.05 93.96 93.96	104.64 106.00 106.22 106.33

^aNumerical Hartree-Fock energy: -128.547094 E_h. ^bNumerical Hartree-Fock energy: -108.9931881 E_h. ^ccc-pV6Z Hartree-Fock energy: -76.067401 E_h.

• Achtung: alle hier erwähnten Basissätze sind eigentlich sehr klein! Typische Dichtefunktionalrechnungen mit ebenen Wellen e^{ikx} als Basisfunktionen benötigen ca. 25000-100000 Basisfunktionen!

complete-basis-set-(CBS)-Extrapolation

Theoretische Indizien weisen darauf hin, daß für die Energie im Basissatz-Limit gilt:

$$E_{lim} = E_X + aX^{-3} (106)$$

wobei X die Kardinalzahl der cc-pVXZ-Basen ist, E_X die entsprechende Energie und a eine (unbekannte) Proportionalitätskonstante.

 \Rightarrow mit lediglich zwei Rechnungen für verschiedene Werte von X kann man zum Basissatzlimit extrapolieren:

Fig. 8.19. The convergence of the MP2 correlation energy (full line) and the Hartree–Fock energy (dotted line) in mE_h for N₂ calculated using the cc-pCVXZ basis sets. On the left, we have plotted the *correlation energies* superimposed on a fit of the form (8.4.3) with the horizontal axis representing the asymptotic limit of -537 mE_h. On the right, we have plotted the *errors in the correlation energy* superimposed on the fitted form (8.4.3) (full line) as well as the errors in the Hartree–Fock energy (dotted line) on a logarithmic scale.

- Hartree-Fock konvergiert deutlich schneller als Korrelationsmethoden (siehe Bild)
- cc-pVDZ-Rechnungen liegen oft etwas neben der Extrapolationskurve (siehe Bild)
- andere Extrapolationsvorschriften werden diskutiert
- andere Korrekturen werden bei hohem X ähnlich wichtig:
 - Effekte jenseits von X = 5 sind so groß wie die der core-Valenz-Korrelation
 - $-\ X>6$ ist ähnlich wichtig wie relativistische Effekte für Atome der 1. Periode
 - -X > 7 ist ähnlich wichtig wie nicht-Born-Oppenheimer-Effekte
- CBS-Extrapolation bringt nicht mehr Korrelation:

basis set superposition error (BSSE)

Es sei \mathcal{A} die Basis an "Monomer" A, \mathcal{B} die Basis an Monomer B, $\mathcal{AB}(R)$ die Vereinigung dieser beiden Basissätze bei einem Abstand R der Monomere und $E(X|\mathcal{X})$ die Energie des Systems X berechnet in der Basis \mathcal{X} .

Standardvorschrift zur Berechnung der Dissoziationsenergie eines "Dimers" AB in die Monomere A und B:

$$-D = E(AB|\mathcal{C}) - E(A|\mathcal{C}) - E(B|\mathcal{C})$$
(107)

ist korrekt, wenn Basis C vollständig ist. In der Praxis sind Basissätze aber unvollständig, und wir berechnen tatsächlich:

$$-\tilde{D} = E(AB|\mathcal{AB}(R=R_e)) - E(A|\mathcal{A}) - E(B|\mathcal{B})$$
(108)

Dabei kann Monomer A bei der Berechnung von $E(AB|\mathcal{AB}(R = R_e))$ an den Basisfunktionen in \mathcal{B} partizipieren, bei der Berechnung von $E(A|\mathcal{A})$ jedoch nicht; analog für Monomer B. Dies ist der *Basissatzüberlagerungsfehler (BSSE)*. Er ist von derselben Größenordnung wie die Dissoziationsenergie von van-der-Waals-Komplexen und wirkt sich bei Korrelationsrechnungen stärker aus als bei HF- und DFT-Rechnungen.

Mögliche Abhilfen:

• counterpoise-Korrektur (CPC) von Boys und Bernardi: Man definiert

$$CPC_A = E(A|\mathcal{A}) - E(A|\mathcal{AB}(R = R_e))$$
(109)

$$CPC_B = E(B|\mathcal{B}) - E(B|\mathcal{AB}(R=R_e))$$
(110)

wobei $E(A|\mathcal{AB}(R = R_e))$ genauso berechnet wie $E(AB|\mathcal{AB}(R = R_e))$, nur daß die Elektronen und Kernladungen von *B* fehlen; die Basis \mathcal{A} wird dabei um die *ghost basis* \mathcal{B} erweitert, ohne daß das Monomer *B* selbst vorhanden ist. Die CPC-korrigierte Dissoziationsenergie ist dann:

$$-D_{CPC} = -\tilde{D} + CPC_A + CPC_B$$

$$= E(AB|\mathcal{AB}(R = R_e)) - E(A|\mathcal{AB}(R = R_e)) - E(B|\mathcal{AB}(R = R_e))$$
(111)
(111)
(112)

- CPC = BSSE gilt nicht streng,

- saubere Trennung zwischen physikalisch sinnvollen Monomer-WW und Basissatzartefakten nicht trivial,
- CPC ist bei der Berechnung von Potentialflächen aufwendig, weil Dimer-Basis $\mathcal{AB}(R)$ von R abhängt \Rightarrow Monomer-Korrekturrechnungen müssen für jedes R erneut durchgeführt werden.
- Verwendung größerer Basissätze
- Verwendung von Methoden, die BSSE per Konstruktion vermeiden oder vermindern: z.B. lokale Korrelationsmethoden.

Analytische Ableitungen: Einleitung

Berechnung der elektronischen Energie in der Born-Oppenheimer-Separation erfolgt bei einer festen Molekülgeometrie = an einem Punkt im *Konfigurationsraum* des Moleküls.

Wiederholung dieser Rechnung bei verschiedenen Punkten liefert schließlich eine Potentialenergie(hyper)fläche.

Potentialenergieflächen (und ggf. *Übergangsmomente* sowie nichtadiabatische Kopplungen zwischen ihnen) \rightarrow input für *Reaktionsdynamik*: Simulation der Dynamik chemischer Reaktionen auf molekularer Ebene.

Traditionell ist Aufsuche und Charakterisierung von

- Minima (\approx stabile Moleküle)
- Sattelpunkten (\approx Übergangszustände von Reaktionen)
- Pfaden minimaler Energie zwischen diesen
 (≈ stationäre Approximation an Reaktionswege)

per Geometrieoptimierung ein Teil der Quantenchemie (electronic structure theory).

Effiziente Geometrieoptimierung erfordert wenigstens 1. Ableitungen (Gradienten). 2. Ableitungen liefern Frequenzen und Unterscheidung zwischen Minima und Sattelpunkten.

Im Prinzip immer möglich: numerische Ableitungen. Aber: Für numerischen Gradient eines Molekül mit N Freiheitsgraden mindestens N + 1 Energieberechnungen nötig (für realistische Genauigkeit eher 2N + 1 bis 4N + 1) \Rightarrow viel zu teuer!

Analytische Gradienten benötigen je nach Wellenfunktions-/Korrelationstyp nur ca. 1–3 mal soviel Zeit wie eine Energieberechnung!

In ähnlicher Weise: analytische/numerische Ableitungen der Energie nach anderen Größen \rightarrow Berechnung von Moleküleigenschaften

Hellmann-Feynman-Theorem

Die Ableitung der Energie $E = \langle \Psi | \hat{H} | \Psi \rangle$ nach einem Parameter λ müßte eigentlich lauten:

$$\frac{\partial E}{\partial \lambda} = \left\langle \Psi \left| \frac{\partial \hat{H}}{\partial \lambda} \right| \Psi \right\rangle + \left\langle \frac{\partial \Psi}{\partial \lambda} \right| \hat{H} \left| \Psi \right\rangle + \left\langle \Psi \right| \hat{H} \left| \frac{\partial \Psi}{\partial \lambda} \right\rangle$$
(113)

Nach Hellmann und Feynman gilt für die exakte Eigenfunktion Ψ (sowie für vollständig variationsmäßig optimierte HF- und MCSCF-Wellenfunktionen) jedoch:

$$\frac{\partial E}{\partial \lambda} = \left\langle \Psi \left| \frac{\partial \hat{H}}{\partial \lambda} \right| \Psi \right\rangle \tag{114}$$

In diesen Fällen reicht also die (einfachere!) Berechnung des *Hellmann-Feynman-Terms* (1. Term von Gl. 113); die aufwendigeren *Pulay-Korrekturen* (2. und 3. Term von Gl. 113) entfallen.

Fehler in Ψ wirken sich jedoch im Hellmann-Feynman-Ausdruck Gl. 114 viel stärker aus als im vollständigen Ausdruck. \Rightarrow im Zweifel immer Gl. 113 verwenden!

Ausnahmen: z.B. Ortsableitung in einer raumfesten Basis (z.B. ebene Wellen) (die erheblich höhere Anzahl von Basisfunktionen macht diesen Vorteil aber zunichte).

Analytische 1. Ableitung der closed-shell-HF-Energie

Die closed-shell-HF-Gesamtenergie lautet:

$$E = \sum_{\mu\nu} D_{\mu\nu} h_{\mu\nu} + \frac{1}{2} \sum_{\mu\nu\rho\sigma} D_{\mu\nu} D_{\rho\sigma}(\mu\nu||\rho\sigma) + V_{NN}$$
(115)

Dabei ist $D_{\mu\nu}$ die Dichtematrix erster Ordnung

$$D_{\mu\nu} = 2\sum_{i}^{occ} C_{\mu i} C_{\nu i} , \qquad (116)$$

 V_{NN} ist die Kern-Kern-Abstoßung

$$V_{NN} = \sum_{A} \sum_{A>B} \frac{Z_A Z_B}{R_{AB}} , \qquad (117)$$

und wir haben folgende Abkürzung verwendet:

$$(\mu\nu||\rho\sigma) = (\mu\nu|\rho\sigma) - \frac{1}{2}(\mu\sigma|\rho\nu)$$
(118)

Wenn wir Gl. 115 nach X_A ableiten, erhalten wir unter Berücksichtigung der Tatsache, daß sich die SCF-Koeffizienten und damit auch die Dichtematrix $D_{\mu\nu}$ mit der Geometrie ebenfalls ändern, den Ausdruck:

$$\frac{\partial E}{\partial X_A} = \sum_{\mu\nu} D_{\mu\nu} \frac{\partial h_{\mu\nu}}{\partial X_A} + \frac{1}{2} \sum_{\mu\nu\rho\sigma} D_{\mu\nu} D_{\rho\sigma} \frac{\partial(\mu\nu||\rho\sigma)}{\partial X_A} + \frac{\partial V_{NN}}{\partial X_A} + \sum_{\mu\nu} \frac{\partial D_{\mu\nu}}{\partial X_A} h_{\mu\nu} + \sum_{\mu\nu\rho\sigma} \frac{\partial D_{\mu\nu}}{\partial X_A} D_{\rho\sigma}(\mu\nu||\rho\sigma)$$
(119)

Die letzten beiden Terme dieser Gleichung können wie folgt umgeformt werden:

$$= 4\sum_{\mu\nu}\sum_{i}^{occ}\frac{\partial C_{\mu i}}{\partial X_{A}}h_{\mu\nu}C_{\nu i} + 4\sum_{\mu\nu\rho\sigma}\sum_{i}^{occ}\frac{\partial C_{\mu i}}{\partial X_{A}}D_{\rho\sigma}(\mu\nu||\rho\sigma)C_{\nu i}$$
(120)

$$= 4 \sum_{\mu\nu} \sum_{i}^{occ} \frac{\partial C_{\mu i}}{\partial X_A} \left[h_{\mu\nu} + \sum_{\rho\sigma} D_{\rho\sigma}(\mu\nu||\rho\sigma) \right] C_{\nu i}$$
(121)

$$= 4 \sum_{\mu\nu} \sum_{i}^{occ} \frac{\partial C_{\mu i}}{\partial X_A} F_{\mu\nu} C_{\nu i}$$
(122)

$$= 4 \sum_{i}^{occ} \epsilon_i \sum_{\mu\nu} \frac{\partial C_{\mu i}}{\partial X_A} S_{\mu\nu} C_{\nu i}$$
(123)

Die Orthonormalitätsbedingung der MO's ψ_i und ψ_j lautet

$$\sum_{\mu\nu} C_{\mu i} S_{\mu\nu} C_{\nu j} = \delta_{ij} \tag{124}$$

Ableitung dieser Beziehung nach X_A liefert:

$$2\sum_{\mu\nu}\frac{\partial C_{\mu i}}{\partial X_A}S_{\mu\nu}C_{\nu i} = -\sum_{\mu\nu}C_{\mu i}C_{\nu i}\frac{\partial S_{\mu\nu}}{\partial X_A}$$
(125)

Mit der Definition einer modifizierten Dichtematrix

$$Q_{\mu\nu} = 2\sum_{i}^{occ} \epsilon_i C_{\mu i} C_{\nu i} \tag{126}$$

wird daher aus Gl. 119 schließlich:

$$\frac{\partial E}{\partial X_A} = \sum_{\mu\nu} D_{\mu\nu} \frac{\partial h_{\mu\nu}}{\partial X_A} + \frac{1}{2} \sum_{\mu\nu\rho\sigma} D_{\mu\nu} D_{\rho\sigma} \frac{\partial (\mu\nu||\rho\sigma)}{\partial X_A} - \sum_{\mu\nu} Q_{\mu\nu} \frac{\partial S_{\mu\nu}}{\partial X_A} + \frac{\partial V_{NN}}{\partial X_A}$$
(127)

Dieser Ausdruck enthält keine Ableitungen $\partial C_{\mu i}/\partial X_A$ der MO-Entwicklungskoeffizienten, obwohl wir für die Ableitung der Energie eigentlich allgemein hätten schreiben müssen

$$\frac{\partial E}{\partial X_A} = \frac{\partial E}{\partial X_A} + \sum_{\mu k} \frac{\partial E}{\partial C_{\mu k}} \frac{\partial C_{\mu k}}{\partial X_A}$$
(128)

Die Lösung der HF-Gleichungen (die wir verwendet haben), entspricht jedoch gerade der Bedingung $\partial E/\partial C_{\mu k} = 0$. Zur analytischen Ermittlung von höheren Ableitungen muß man diese Terme aber berechnen (mit Hilfe der *coupled perturbed HF-Gleichungen (CPHF)*).

Ableitungen von Basisfunktionsintegralen

Die verbleibenden Ableitungen von 1- und 2-Elektronenintegralen sind mit GTOs nicht schwierig: Die Ableitung eines kartesischen GTOs ist die Summe zweier kartesischer GTOs mit erhöhter und erniedrigter Rotationsquantenzahl:

$$\frac{\partial}{\partial X_A} (x - X_A)^l (y - Y_A)^m (z - Z_A)^n e^{-\alpha_\mu (\mathbf{r} - \mathbf{R}_A)^2} = \{-l(x - X_A)^{l-1} + 2\alpha_\mu (x - X_A)^{l+1}\} (y - Y_A)^m (z - Z_A)^n e^{-\alpha_\mu (\mathbf{r} - \mathbf{R}_A)^2}$$
(129)

Nachteil: durch hohe Rotationsquantenzahlen komplizierte, z.T. ineffiziente Programme, besonders bei höheren Ableitungen

Vorteil: die Integrale müssen nicht abgespeichert werden, sondern können gleich zu Gradientenbeiträgen aufaddiert werden.

Geometrieoptimierung: Koordinaten

Optimierung der Struktur eines Moleküls entspricht der Minimierung der Energie durch simultane Variation aller 3N-6 Freiheitsgrade (3 Koordinaten pro Atom, minus Gesamt-Translation und -Rotation).

 \Rightarrow Schwierigkeit der Optimierung hängt entscheidend von der Koordinatenwahl ab: Ungeeignete Koordinaten können

• die Energiefunktion unnötig verkomplizieren, z.B. $E_{\text{Morse}} = (1 - e^{-x})^2$, sowie $y = e^{-x}$ und $z = e^x$

• Kopplungen zwischen Koordinaten einführen oder verstärken, z.B.:

FIGURE 8.3 Example of paths taken when an angle changes in a geometry optimization. (a) Path taken by an optimization using a Z-matrix or redundant internal coordinates. (b) Path taken by an optimization using Cartesian coordinates.

Standard-Koordinatensysteme:

- kartesische Koordinaten: einfach; koppeln aber stark
- Z-Matrix: Aufstellung ggf. schwierig; gute Z-Matrix besser als kartesische Koord.
- natürliche/redundante/delokalisierte interne Koordinaten: Aufstellung automatisiert; ggf. beste Wahl (?)

Geometrieoptimierung: Methoden

senkrechte Schritte.

Beliebige iterative Methoden der Numerischen Mathematik zur nichtlinearen Optimierung von Funktionen mehrerer Variabler, in ökonomisierter Form (möglichst wenig Funktionsberechnungen, da sehr teuer):

 steilster Abstieg (steepest descent): jede Iteration = 1D-Minimierung (line search) in Richtung des negativen Gradienten.
 Vorteile: garantierte Erniedrigung von E in jeder Iteration, aber nur mit sehr teurem line-search
 Nachteile: bei Ersatz der line-searches durch Schritte keine Konvergenzgarantie und keine Schrittweitenkontrolle; langsame Konvergenz durch zwangsläufig zueinander

- conjugate gradient: line-search-Iterationen in zueinander konjugierte Richtungen. Vorteile: erreicht Minimum einer quadratischen Form in N Dimensionen garantiert in max. N Schritten (quadratische Konvergenz) Nachteile: kaum gute Alternativen zu den teuren line-searches.
- quasi-Newton: Schritte in konjugierte Richtungen, mit expliziter, sukzessiver Verbesserung einer genäherten Hesseschen Matrix.
 Vorteile: teure line-searches können durch viele Varianten mit intelligenter Schrittweitensteuerung ersetzt werden (augmented Hessian, rational function optimization, eigenvector following, geometry DIIS)
 Nachteile: in der Praxis können trotzdem zu große Schritte vorkommen, die aber bereits durch einfache feste Obergrenzen beherrscht werden können.

Geometrieoptimierung: Problemfälle

- soft modes / large amplitude motions: sehr flache Potentialfläche für diese Bewegungen (geringe Energieänderung bei großen Geometrieänderungen); häufig bei Molekülen mit vielen Rotationsfreiheitsgraden oder Wasserstoffbrückenbindungen.
- Einfluß angeregter Zustände: bei geringem HOMO-LUMO-Abstand kann die SCF-Rechnung in einzelnen Iterationen zu angeregten Zuständen konvergieren \Rightarrow falsche Gradienten; typisch bei Elektrontransferreaktionen.

• trotz interner Kontrollmöglichkeiten können Geometrieoptimierungen nicht nur zu Minima, sondern auch zu Sattelpunkten (Übergangszuständen) konvergieren \Rightarrow Resultate immer durch Frequenzrechnung überprüfen! (s.u.) (Sattelpunkt: ≥ 1 imaginäre Frequenz)

Exkurs: Fehler in der Theoretischen Chemie

Fig. 15.1. The errors in quantum-chemical calculations.

Fig. 15.2. The dependence of the calculated property on the quality of the basis.

Geometrieoptimierung: Resultate

intrinsische	HF Fohlor	bei	Bindungslängen:		ca.	3	pm
	III - Feiner.	bei	Bindungswinkeln:	ca.	1.6	G	rad

typisches Beispiel: Geometrie von H₂O. Experimentelle Werte: $R_{OH} = 0.9578$ Å, $\alpha_{HOH} = 104.48^{\circ}$

Basis	$R_{\rm OH}({\rm \AA})$	$\alpha_{ m HOH}$
cc-pVDZ	0.9463	104.61
cc-pVTZ	0.9406	106.00
cc-pVQZ	0.9396	106.22
cc-pV5Z	0.9396	106.33
cc-pV6Z	0.9396	106.33

Table 11.1.	H ₂ O geometry	as a func-
tion of basis	set at the HF leve	el of theory

Energie als Funktion des Bindungswinkels (ohne Bindungsbruch) relativ gut in HF:

Figure 11.14 Angle bending curves for H₂O

Energie als Funktion des Bindungsabstands wird für closed-shell-HF im Dissoziationslimit notwendigerweise falsch (genauere Analyse: s.u.). Experimenteller Wert: 125.9 kcal/mol

Figure 11.1 Bond dissociation curves for H₂O at the HF level, absolute energies

Figure 11.2 Bond dissociation curves for H₂O at the HF level, relative energies

Globale Geometrieoptimierung

Alle obigen Geometrieoptimierungsverfahren sind *lokal:* Konvergenz immer zum Minimum, in dessen Einzugsbereich der Startpunkt liegt.

Unproblematisch bei traditionellen Molekülen der Organik und Anorganik:

- rate wahrscheinliche Minimum-Geometrie ("chemische Intuition")
- ggf. Voroptimierung mit Kraftfeld- oder semiempirischen Methoden
- lokale Optimierung auf gewünschtem Theorieniveau
- wenn resultierende Geometrie falsch, wiederhole von vorn...

Vorgehen völlig unzureichend bei unkonventionellen Systemen, z.B. Clustern:

- chemische Intuition versagt;
- Anzahl lokaler Minima steigt exponentiell mit Systemgröße (Ar_n hat bei $n \approx 100$ ca. 10^{40} lokale Minima!)

- \Rightarrow Anwendung globaler Optimierungsmethoden nötig:
 - simulated annealing (SA)
 - evolutionäre Algorithmen (EA)
 - . . .

(verwandte Probleme: Andocken von Wirkstoffmolekülen an Rezeptoren, Proteinfaltung)

Optimierung von Übergangszuständen (TS)

Koordinaten: Z-Matrix

(kartesische koppeln zu stark; natürliche interne Koordinaten versagen oft, da ihre Definition Annahmen über Bindungsstruktur enthält, die am TS falsch sein können.)

"walking up valleys" ist auf ab-initio-Flächen zu teuer und außerdem fehleranfällig:

Beste Strategie: 1) TS grob annähern, 2) exakte Lokalisierung.

- 1. Annäherungsverfahren:
 - *linear synchronous transit (LST):* lineare Interpolation aller Koordinaten von Edukt und Produkt; finde Energiemaximum auf diesem linearen Weg.

- quadratic synchronous transit (QST): parabolische Interpolation durch Edukt, Produkt und den LST-Punkt (nach Relaxation dieses Punkts senkrecht zum LST-Pfad); Maximum auf diesem Weg.
- . . .
- 2. exakte Lokalisierung:
 - im Ggs. zur Minimierung muß exakte Hessesche Matrix mindestens einmal (am Anfang) gerechnet werden
 - im Prinzip finden Minimierungsalgorithmen auch Sattelpunkte, aber Konvergenzradius viel kleiner
 - z.Z. nur zwei effiziente Methoden:
 - RF-Variante von Quasi-Newton (eigenvector following)
 - quadratic steepest descent (QSD) auf der image function (\approx Abbild der Potentialenergiefläche, bei dem die Sattelpunkte Minima entsprechen (und umgekehrt))

Reaktionswege

Verfolgung des steilsten Abstiegs, ausgehend vom Sattelpunkt, in beide Richtungen entlang des Eigenvektors mit imaginärer Frequenz.

- Gonzalez-Schlegel: Alternierung von normalen steepest-descent-Schritten mit Korrekturschritten;
- modifizierter QSD von Sun & Rüdenberg.

Für qualitative Zwecke reichen relaxierte LST/QST-Pfade.

Potentialenergieflächen

Standardmethode: nichtlinearer least-squares-Fit von geeigneten analytischen Ausdrücken an geeignet gewählte ab-initio-Punkte.

Mögliche Alternativen:

• Reaktionsweg- bzw. Reaktionsflächen-Hamiltonoperator:

explizite Dynamik nur in einer Koordinate (= Reaktionsweg) oder wenigen Koordinaten; andere Freiheitsgrade werden als daran gekoppelte harmonische Oszillatoren behandelt.

• direkte ab-initio-Dynamik:

ab-initio-Punkte werden während der Berechnung der Kern-Trajektorien dort und nur dort ermittelt, wo sie gebraucht werden.

- Car-Parrinello-Methode: DFT mit klassischer Dynamik
- Interpolationsverfahren
- $-\ldots$, siehe TC-II

Frequenzen

Diagonalisierung der Hesseschen Matrix in massengewichteten kartesischen Koordinaten liefert die Schwingungs-*Normalkoordinaten* und die zugehörigen harmonischen(!) Frequenzen.

6 (5) der resultierenden Frequenzen entsprechen Translationen bzw. Rotationen und sollten eigentlich Null sein. *Aber:* numerische Fehler (Gradient, Hessesche Matrix) können bei Rotationen zu falschen Frequenzen bis zu 50 cm⁻¹ führen:

selbe Größenordnung wie echte, niederfrequente Molekülschwingungen!

Abhilfe: Herausprojektion von Translationen und Rotationen aus der massengewichteten Hesse-Matrix.

Table 11.13 H₂O HF harmonic frequencies (cm^{-1}) as a function of basis set; experimental values are 3943 cm⁻¹, 3832 cm⁻¹ and 1649 cm⁻¹

Basis	ω_1	ω_2	ω_3
cc-pVDZ cc-pVTZ cc-pVQZ	4212 4227 4229	4114 4127 4130	1776 1753 1751
cc-pv5Z	4231	4131	1748

Spektren von Benzofuroxan

Verwendung von Frequenzen:

- Charakterisierung von stationären Punkten
- Nullpunktsenergiekorrektur
- Spektrenberechnung; Intensitäten ergeben sich aus:

$$\Gamma_i \sim \frac{1}{\nu_i} \left[\left(\frac{\partial \mu_x}{\partial q_i} \right)^2 + \left(\frac{\partial \mu_y}{\partial q_i} \right)^2 + \left(\frac{\partial \mu_z}{\partial q_i} \right)^2 \right]$$
(130)

Auf HF-Niveau kann der Erwartungswert des Dipolmoments aus der Ableitung nach der Feldstärke mit dem Hellmann-Feynman-Theorem berechnet werden.

• thermodynamische Eigenschaften, über die Schwingungs-Zustandssumme

$$z_{vib} = \prod_{i=1}^{n_{vib}} \frac{\exp(-\Theta_i^{vib}/2T)}{1 - \exp(-\Theta_i^{vib}/T)}$$
(131)

mit der Schwingungstemperatur $\Theta_i^{vib} = h\nu_i/k.$

Koopmans Theorem

Die Energie einer Slaterdeterminante für N Elektronen ist:

$$E_N = \sum_{i=1}^N h_{ii} + \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N (J_{ij} - K_{ij})$$
(132)

Die Energie einer Slaterdeterminante für N-1 Elektronen, bei der ein Elektron aus Orbital k entfernt wurde, lautet:

$$E_{N-1}^{k} = \sum_{i=1}^{N-1} h_{ii} + \frac{1}{2} \sum_{i=1}^{N-1} \sum_{j=1}^{N-1} (J_{ij} - K_{ij})$$
(133)

Die Differenz dieser beiden Ausdrücke ist gerade die Orbitalenergie von Orbital k:

$$E_N - E_{N-1}^k = h_{kk} + \frac{1}{2} \sum_{i=1}^N (J_{ik} - K_{ik}) + \frac{1}{2} \sum_{j=1}^N (J_{kj} - K_{kj})$$
(134)

$$= h_{kk} + \sum_{i=1}^{N} (J_{ik} - K_{ik}) = \epsilon_k$$
(135)

 \Rightarrow Ionisierungsenergie ist gegeben durch:

$$IP = E_{N-1}^k - E_N = -\epsilon_k \tag{136}$$

Analoge Überlegung führt zur Elektronenaffinität:

$$\mathbf{EA} = E_N - E_{N+1}^a = -\epsilon_a \tag{137}$$

Implizite Voraussetzung dabei: Die MOs bleiben unverändert bei Änderung der Elektronenzahl. \Leftarrow sicherlich falsch! Relaxation der Orbitale im System mit N-1 bzw. N+1Elektronen würde zu einer Energieerniedrigung führen.

Die im HF vernachlässigte Elektronenkorrelation ergibt weitere Energieerniedrigung, stärker für Systeme mit mehr Elektronen als für solche mit weniger Elektronen.

 \Rightarrow Fehlerkompensation bei IPs, aber Fehlerverstärkung bei EAs.

Table 10.2 The vertical IPs of H_2O (in E_h) calculated using Koopmans' method and the \triangle SCF method at the optimized geometries of the neutral molecule

		$1a_1$	$2a_1$	1 <i>b</i> ₂	3a ₁	$1b_1$
Koopmans' method	cc-pCVDZ	20.547	1.342	0.706	0.569	0.494
	cc-pCVTZ	20.550	1.352	0.722	0.578	0.505
	cc-pCVQZ	20.556	1.357	0.728	0,582	0.509
Δ SCF method	cc-pCVDZ	19.854	1.260	0.648	0.485	0.401
	cc-pCVTZ	19.815	1.265	0.656	0.489	0.409
	cc-pCVQZ	19.813	1.266	0.658	0.489	0.410
Experiment ^a		19.83	1.18	0.676	0.540	0.463

^aK. Siegbahn, C. Nordling, C. Johansson, J. Hedman, P. F. Heden, K. Hamrin, U. Gelius, T. Bergmark, L. O. Werme, R. Manne and Y. Baer, *ESCA Applied to Free Molecules*, North-Holland, 1969.

Berechnung weiterer Moleküleigenschaften

Viele Eigenschaften können auf verschiedene Weisen berechnet werden, z.B. das Dipolmoment als Erwartungswert des Dipoloperators oder als erste Ableitung der Energie nach dem elektrischen Feld:

$$\boldsymbol{\mu} = \langle \Psi | \mathbf{r} | \Psi \rangle = -\frac{\partial E}{\partial \mathbf{F}} \tag{138}$$

Bei letzterer Möglichkeit kann man finite Differenzen verwenden, wenn keine analytischen Ableitungen vorliegen.

Table 15.10 Experimental and calculated dipole moments (in D) for the polar molecules in Table 15.1. The calculated dipole moments have been obtained at the CCSD(T) level in the aug-cc-pVQZ basis; the predicted dipole moments have been generated from the CCSD(T) values as explained in Section 15.5.3

	Experimental		Theor	etical
	μ_0	μ_{e}	Calculated μ_e	Predicted μ_e
со	0.1097(1) ^a	0.123(2) ^a	0.12	0.13(1)
O3	0.5324(24) ^b	_	0.56	0.52(4)
NH3	1.471932(7) ^c	$1.561(5)^{d}$	1.52	1.52(1)
HNO		-	1.69	1.69(2)
CH_2	-	_	1.69	1.69(1)
H_2O_2	2.2 ^e		1.75	1.74(2)
HF	1.826178(3) ^f	$1.803(2)^{f}$	1.80	1.80(1)
H_2O	1.8546(6) ^g	1.8473(10) ^g	1.85	1.85(1)
HOF	-	-	1.89	1.89(1)
CH_2O	2.3321(5) ^h	_	2.39	2.38(2)
HCN	2.985188(3) ⁱ	~	3.02	3.01(2)
HNC	3.05(1) ^j		3.11	3.11(1)

Viele weitere Eigenschaften können über verschiedene Ableitungen erhalten werden (**F**: elektrisches Feld, **B**: magnetisches Feld, **I**: Kernspin, **R**: Kernkoordinaten):

 Table 10.1
 Properties which may be calculated from derivatives of the energy

n_F	n _B	n_I	n_R	Property
0	0	0	0	Energy
1	0	0	0	Electric dipole moment
0	1	0	0	Magnetic dipole moment
0	Ō	1	0	Hyperfine coupling constant
0	0	0	1	Energy gradient
2	0	0	0	Electric polarizability
0	2	0	0	Magnetizability
0	0	2	0	Spin-spin coupling (for different nuclei)
0	0	0	2	Harmonic vibrational frequencies
1	0	0	1	Infra-red absorption intensities
1	1	0	0	Circular dichroism
0	1	1	0	Nuclear magnetic shielding
3	0	0	0	(first) Electric hyperpolarizability
0	3	0	0	(first) Hypermagnetizability
0	0	0	3	(cubic) Anharmonic corrections to vibrational frequencies
2	0	0	1	Raman intensities
2	1	0	0	Magnetic circular dichroism (Faraday effect)
1	0	0	2	Infra-red intensities for overtone and combination bands
4	0	0	0	(second) Electric hyperpolarizability
0	4	0	0	(second) Hypermagnetizability
0	0	0	4	(quartic) Anharmonic corrections to vibrational frequencies
2	0	0	2	Raman intensities for overtone and combination bands
2	2	0	0	Cotton-Mutton effect

Analyse der Wellenfunktion

Die Gesamtzahl N der Elektronen in einem Molekül ist gegeben durch:

$$N = \sum_{i}^{MO} n_i \int |\psi_i(\mathbf{r})|^2 \, d\mathbf{r} \tag{139}$$

wobei n_i die Besetzung des MOs ψ_i angibt. Entwicklung der MOs in AOs liefert mit der Dichtematrix **D** und der Überlappungsmatrix **S**:

$$N = \sum_{\mu}^{AO} \sum_{\nu}^{AO} \sum_{i}^{MO} n_i C_{\mu i} C_{\nu i} \int \phi_{\mu}(\mathbf{r}) \phi_{\nu}(\mathbf{r}) \, d\mathbf{r} = \sum_{\mu} \sum_{\nu} D_{\mu\nu} S_{\nu\mu} = \sum_{\mu} (\mathbf{DS})_{\mu\mu} = \operatorname{tr} \mathbf{DS} \qquad (140)$$

In der Mulliken-Populationsanalyse definiert man willkürlich, daß **DS**-Beiträge von an Atom A zentrierten AO-Basisfunktionen zu Atom A gehören. \Rightarrow Ladung an Atom A:

$$q_A = Z_A - \sum_{\mu \in A} (\mathbf{DS})_{\mu\mu} \tag{141}$$

und Ordnung der Bindung zwischen Atomen A und B:

$$BO_{AB} = \sum_{\mu \in A} \sum_{\nu \in B} D_{\mu\nu} S_{\nu\mu}$$
(142)

Vorteil: billig; aber Nachteile:

- konzeptionell willkürlich
- auch mathematisch völlig willkürlich, weil

$$\sum_{\mu} (\mathbf{DS})_{\mu\mu} = \sum_{\mu} (\mathbf{S}^{\alpha} \mathbf{DS}^{1-\alpha})_{\mu\mu}$$
(143)

Mit $\alpha = 1/2$ erhält man die Löwdin-Populationsanalyse.

• diffuse Funktionen auf Atom X tragen nicht unerheblich zur Elektronendichte an benachbarten Atomen Y bei \Rightarrow keine Konvergenz bei Basissatzvergrößerung.

Weitere Analyseverfahren:

• ESP-fitting: Partialladungen auf den Atomen werden so gewählt, daß das elektrostatische Potential an allen Punkten \mathbf{r} in der Umgebung des Moleküls gleich dem aus der Wellenfunktion berechneten wird:

$$V(\mathbf{r}) = \sum_{A} \frac{Z_A}{|\mathbf{r} - \mathbf{R}_A|} - \int \frac{|\Psi(\mathbf{r}_i)|^2}{|\mathbf{r} - \mathbf{r}_i|} \, d\mathbf{r}_i \tag{144}$$

Vorteile: (schnelle) Konvergenz mit Basissatz und Methode; Nachteile: unterbestimmt, Konformationsabhängigkeit.

• Atoms in Molecules (AIM): direkte "topologische" Analyse der Ein-Elektronen-Gesamtdichte

$$\rho(\mathbf{r}_1) = \int |\Psi(\mathbf{r}_2, \mathbf{r}_3, \dots, \mathbf{r}_N)|^2 d\mathbf{r}_2 d\mathbf{r}_3 \cdots d\mathbf{r}_N$$
(145)

 \Rightarrow Zuteilung von atomaren Bereichen, Bindungen, usw.

Vorteile: konzeptuell klar und einfach, Konvergenz;

Nachteile: numerische Probleme, Multipolmomente und ESP in der Regel nicht korrekt reproduziert, Überschätzung der Ladungstrennung in heterogenen Bindungen, z.T. Zuordnungsfehler bei schwachen Bindungen.

- Natural Atomic Orbitals (NAO) und Natural Bond Orbitals (NBO): sukzessive Blockdiagonalisierung einer nach Atomzentren geordneten Dichtematrix; ggf. der z.Z. beste Kompromiß.
- MO-Lokalisierung: andere Linearkombinationen der kanonischen HF-MOs, nach verschiedenen Kriterien ausgewählt;
 Vorteile: Orbitale für Bindungen und einsame Elektronenpaare, Nebenprodukt von lokalen Korrelationsverfahren;
 Nachteile: nicht quantitativ, nur bildlich, kann bei delokalisierten Systemen versagen.
- Electron Localization Function (ELF)
- . . .

Basis	Mulliken	Löwdin	ESP Fit	NAO	AIM
STO-3G	-0.39	-0.27	-0.65	-0.41	-0.89
3-21G	-0.74	-0.46	-0.90	-0.87	-0.93
6-31G(d,p)	-0.67	-0.44	-0.81	-0.97	-1.24
6-311G(2d,2p)	-0.52	-0.00	-0.74	-0.91	-1.21
6-311++G(2d,2p)	-0.47	-0.12	-0.76	-0.93	-1.25
cc-pVDZ	-0.29	-0.58	-0.76	-0.91	-1.25
cc-pVTZ	-0.48	-0.11	-0.75	-0.92	1.27
cc-pVQZ	-0.51	+0.23	-0.75	0.72	
aug-cc-pVDZ	-0.26	-0.39	-0.74	-0.96	-1.26
aug-cc-pVTZ	-0.41	+0.12	-0.74	-0.93	1.20

Table 9.2 Atomic charges for oxygen in H_2O

Das RHF-Dissoziationsproblem

Die minimale Basis für H₂ besteht aus zwei 1s-STOs, zentriert an den beiden Kernen i = 1, 2:

$$\phi_i(\mathbf{r}) = (\zeta^3/\pi)^{1/2} e^{-\zeta |\mathbf{r} - \mathbf{R}_i|} , \qquad \zeta = 1.24$$
 (146)

Bereits aus Symmetriegründen (ohne HF-Rechnung) ist klar, daß es nur zwei MOs gibt:

$$\psi_1 = [2(1+S_{12})]^{-1/2}(\phi_1+\phi_2)$$
, $\psi_2 = [2(1+S_{12})]^{-1/2}(\phi_1-\phi_2)$ (147)

und daß der HF-Grundzustand folgende Wellenfunktion hat:

$$|\Psi_0\rangle = |\psi_1\bar{\psi}_1\rangle = |1\bar{1}\rangle = \psi_1(1)\psi_1(2)\{\alpha(1)\beta(2) - \beta(1)\alpha(2)\}$$
(148)

Der Ortsanteil dieser Funktion ist also (ohne Normierungsfaktoren):

$$\psi_1(1)\psi_1(2) \sim [\phi_1(1) + \phi_2(1)][\phi_1(2) + \phi_2(2)]$$
 (149)

oder nach Ausmultiplizieren:

$$\phi_1(1)\phi_1(2) + \phi_2(1)\phi_2(2) + \phi_2(1)\phi_1(2) + \phi_1(1)\phi_2(2)$$
(150)

Der 3. und 4. Term entsprechen kovalenten Strukturen H–H; der 1. und 2. Term ionischen Strukturen H^+H^- bzw. H^-H^+ ; kovalente und ionische Strukturen sind in einer RHF-Wellenfunktion also 50:50 gewichtet.

Im Limit großen Kernabstands $R \to \infty$ ist der Grundzustand jedoch zwei neutrale H-Atome, also 0% ionischer Anteil. \Rightarrow RHF liefert *per Konstruktion* die falsche Dissoziationsasymptote!

Figure 3.5 Restricted Hartree-Fock potential curve for STO-3G ($\zeta = 1.24$)H₂ compared with the accurate results of Kolos and Wolniewicz.

Weglassen der ionischen Anteile liefert die historisch wichtige valence-bond-(VB)-Funktion

$$\phi_2(1)\phi_1(2) + \phi_1(1)\phi_2(2) \tag{151}$$

Damit erzielt man jedoch auch nur eine Dissoziationsenergie von $D_e = 3.78$ eV; der MO-Wert ist 3.49 eV (jeweils mit optimiertem ζ -Parameter); der experimentelle Wert ist 4.75 eV.

Naheliegend ist ein variabler Mix aus kovalenten und ionischen Termen:

$$\phi_2(1)\phi_1(2) + \phi_1(1)\phi_2(2) + \delta[\phi_1(1)\phi_1(2) + \phi_2(1)\phi_2(2)]$$
(152)

mit $\delta = \delta(R)$ als abstandsabhängigem Variationsparameter. Offenbar ist $\delta(\infty) = 0$ optimal. Eine Variationsrechnung bei $R = R_e$ liefert $\delta(R_e) = 0.26$ und $D_e = 4.03$ eV.

Mit etwas Umordnung und der Definition eines neuen Parameters $\gamma = (\delta - 1)/(\delta + 1)$ kann diese verbesserte Funktion umgeschrieben werden zu:

$$[\phi_1(1) + \phi_2(1)][\phi_1(2) + \phi_2(2)] + \gamma \{ [\phi_1(1) - \phi_2(1)][\phi_1(2) - \phi_2(2)] \}$$
(153)

Dies entspricht dem Ortsanteil von

$$|\psi_1\bar{\psi}_1\rangle + \gamma|\psi_2\bar{\psi}_2\rangle \tag{154}$$

also der Linearkombination zweier Slaterdeterminanten (s.u.: CI)!

ROHF und UHF

Zustände mit ungepaarten Elektronen können prinzipiell nicht durch RHF-Wellenfunktionen dargestellt werden:

Entsprechend andere Voraussetzungen bei der Spinintegration von Gl. 57 führt zu analogen, aber komplizierteren Energie- und Optimierungsgleichungen für ROHF und UHF.

UHF ist formal einfacher: Die Wellenfunktion ist formal immer noch eine einzige Slaterdeterminante: $|\Psi_{\text{UHF}}\rangle = |\psi_1^{\alpha} \bar{\psi}_1^{\beta} \cdots \rangle$. Statt einem müssen aber zwei verallgemeinerte Eigenwertprobleme (für α - und β -Spins) gelöst werden:

$$\mathbf{F}^{\alpha}\mathbf{C}^{\alpha} = \mathbf{S}\mathbf{C}^{\alpha}\boldsymbol{\epsilon}^{\alpha} \qquad , \qquad \mathbf{F}^{\beta}\mathbf{C}^{\beta} = \mathbf{S}\mathbf{C}^{\beta}\boldsymbol{\epsilon}^{\beta} \tag{155}$$

Da sowohl \mathbf{F}^{α} als auch \mathbf{F}^{β} von \mathbf{C}^{α} und \mathbf{C}^{β} abhängen, müssen diese Gleichungen sowohl iterativ als auch gleichzeitig gelöst werden.

UHF dissoziiert qualitativ zur richtigen Asymptote:

Figure 3.19 6-31G** potential energy curves for H₂.

Trotzdem hat UHF auch prinzipielle Probleme:

- um $R = R_e$ ist UHF = RHF \Rightarrow dort selbe Defekte bzgl. Bindungsabstand, Frequenzen, usw.; Grund: fehlende "dynamische" Korrelation (Ein-Determinanten-Wellenfunktion!)
- bei $R \to \infty$ geht die UHF-Wellenfunktion nicht gegen die korrekte Singulett-Funktion (im Minimal-Basis-H₂-Beispiel)

$$|\phi_1(1)\bar{\phi}_2(2)\rangle + |\phi_2(1)\bar{\phi}_1(2)\rangle = (\phi_1\phi_2 + \phi_2\phi_1)(\alpha\beta - \beta\alpha)$$
(156)

sondern gegen eine 50:50-Mischung von Singulett und Triplett:

$$|\phi_1(1)\bar{\phi}_2(2)\rangle = \phi_1\phi_2\alpha\beta - \phi_2\phi_1\beta\alpha \tag{157}$$

$$= \frac{1}{2} \{ (\phi_1 \phi_2 + \phi_2 \phi_1) (\alpha \beta - \beta \alpha) + (\phi_1 \phi_2 - \phi_2 \phi_1) (\alpha \beta + \beta \alpha) \}$$
(158)

d.h. obwohl die Energie asymptotisch richtig ist, ist die Gesamt-Wellenfunktion falsch. Bei $R = \infty$ " ist diese *Spin-Kontamination* irrelevant, weil Singulett und Triplett sich nicht unterscheiden. Bei intermediären R-Werten ($R_e \ll R \ll \infty$) ist jedoch auch die UHF-Energie falsch (zu hoch).

ROHF hat eine kompliziertere Theorie, leidet aber nicht an Spin-Kontamination. ROHF-Dissoziation erfolgt jedoch nur dann korrekt, wenn wenigstens eines der beiden Dissoziationsprodukte ein closed-shell-System ist. Außerdem liegt liegt auch hier eine Ein-Determinanten-Beschreibung vor, und damit ist per Konstruktion die Elektronenkorrelation unzureichend.

Beschreibungsmöglichkeiten der Elektronenkorrelation

• r_{12} -Methoden:

nicht nur Funktionen von einzelnen Elektronenkoordinaten \mathbf{r}_i in den (AO-)Basisfunktionen, sondern auch Funktionen des Abstands zwischen zwei Elektronen $r_{12} = |\mathbf{r}_1 - \mathbf{r}_2|$

- dadurch explizite Möglichkeit zur Beschreibung der Elektronenkorrelation bereits in der Basis
- historisch alt, z.B. bereits 1933 durch James & Coolidge hochgenaue Rechnung für H₂ mit einer Variationsfunktion in elliptischen Koordinaten und mit r_{12} -Termen; Resultat: $D_e = 4.72$ eV (exp.: 4.75 eV)
- erst durch jüngste Entwicklungen praktikabel, da dadurch schwierigere Integrale
- heute meist in Kombination mit anderen Korrelationsverfahren verwendet (s.u.)

• Linearkombination von Slaterdeterminanten:

generelle Möglichkeit der Entwicklung von Vielteilchenfunktionen in Einteilchen-(Produkt-)Funktionen:

Gegeben sei ein vollständiger Satz $\{\psi_i(x)\}$ von Funktionen ψ_i einer einzigen Variablen x. Dann kann jede beliebige Funktion $\Psi(x_1)$ von einer Variablen exakt in eine Reihe entwickelt werden:

$$\Psi(x_1) = \sum_i a_i \psi_i(x_1) , \qquad (159)$$

wobei die Koeffizienten a_i einfache Zahlen sind. Eine beliebige Funktion $\Psi(x_1, x_2)$ von zwei Variablen können wir ganz analog entwickeln:

$$\Psi(x_1, x_2) = \sum_i a_i(x_2)\psi_i(x_1) , \qquad (160)$$

mit dem Unterschied, daß die Koeffizienten $a_i(x_2)$ jetzt Funktionen der zweiten Variablen x_2 sind. Als Funktionen einer einzigen Variablen können wir jedoch auch diese $a_i(x_2)$ gemäß Gl. 159 entwickeln:

$$a_i(x_2) = \sum_j b_{ij} \psi_j(x_2)$$
 (161)

Einsetzen dieser Entwicklung in Gl. 160 liefert:

$$\Psi(x_1, x_2) = \sum_{ij} b_{ij} \psi_i(x_1) \psi_j(x_2)$$
(162)

Soll $\Psi(x_1, x_2)$ antisymmetrisch sein,

$$\Psi(x_1, x_2) = -\Psi(x_2, x_1) \tag{163}$$

müssen wir $b_{ij} = -b_{ji}$ und $b_{ii} = 0$ fordern, oder wir schreiben:

$$\Psi(x_1, x_2) = \sum_{i < j} b_{ij} \left[\psi_i(x_1) \psi_j(x_2) - \psi_j(x_1) \psi_i(x_2) \right]$$
(164)

$$= \sum_{i < j} \sqrt{2} b_{ij} |\psi_i \psi_j\rangle \tag{165}$$

Diese Argumentation läßt sich auf N Teilchen erweitern. Also gilt allgemein, daß man eine beliebige, antisymmetrische N-Teilchen-Funktion als Linearkombination aller N-Teilchen-Slaterdeterminanten eines vollständigen Satzes { $\psi_i(x)$ } von Spinorbitalen schreiben kann.

full configuration interaction (FCI)

Die HF-Grundzustandswellenfunktion sei

$$|\Phi_0\rangle = |\psi_1\psi_2\cdots\psi_i\psi_j\cdots\psi_N\rangle \tag{166}$$

Besetzte Spinorbitale haben also die Indices i, j, k, ℓ, \ldots , virtuelle Orbitale erhalten die Indices a, b, c, \ldots .

Dann ist eine einfach substituierte Determinante (einfach angeregte Konfiguration, single)

$$|\Phi_i^a\rangle = |\psi_1\psi_2\cdots\psi_a\psi_j\cdots\psi_N\rangle \tag{167}$$

Analog gibt es zweifach substituierte Determinanten (doubles), usw.:

$$|\Phi_{ij}^{ab}\rangle = |\psi_1\psi_2\cdots\psi_a\psi_b\cdots\psi_N\rangle \tag{168}$$

Die exakte Wellenfunktion kann dann geschrieben werden als:

$$|\Psi\rangle = c_0|\Phi_0\rangle + \sum_{ia} c_i^a |\Phi_i^a\rangle + \sum_{\substack{i < j \\ a < b}} c_{ij}^{ab} |\Phi_{ij}^{ab}\rangle + \sum_{\substack{i < j < k \\ a < b < c}} c_{ijk}^{abc} |\Phi_{ijk}^{abc}\rangle + \cdots$$
(169)

Variationelle Optimierung der linearen Entwicklungskoeffizienten c_i^a , c_{ij}^{ab} ,... liefert ein Matrix-Eigenwertproblem. Lösungen: CI-Vektoren und Energien (Grundzustand, angeregte Zustände).

Diese Darstellung ist

- exakt, wenn die AO-Basis vollständig ist.
- bei unvollständiger AO-Basis exakt im Unterraum, der von dieser Basis aufgespannt wird; Eigenwerte sind obere Schranken zu den exakten Energien des Grundzustands und der angeregten Zustände.

Anzahl angeregter Determinanten steigt faktoriell mit Basisgröße:

Molekül	Basis	Anzahl Singulett-CSFs
H_2O	6-31G(d)	$30 \cdot 10^{6}$
H_2O	6-311G(2d,2p)	$106 \cdot 10^{9}$
$H_2C = CH_2$	6-31G(d)	$334 \cdot 10^{12}$

\Rightarrow kein Standardverfahren!

Brillouins Theorem

Nach den Slater-Condon-Regeln gilt:

$$\langle \Phi_0 | \hat{H} | \Phi_i^a \rangle = \langle i | h | a \rangle + \sum_j \langle i j | | a j \rangle$$
(170)

Das ist nichts anderes als ein Außerdiagonalelement der Fock-Matrix:

$$\langle \Phi_0 | \hat{H} | \Phi_i^a \rangle = \langle i | h | a \rangle + \sum_j \langle i j | | a j \rangle = \langle i | f | a \rangle$$
(171)

Zur Berechnung von Φ_0 wurde das HF-Problem gelöst, was äquivalent ist zu einer Transformation in einen Satz von Orbitalen, in dem gilt:

$$\langle i|f|a\rangle = 0$$
 , $i \neq a$ (172)

 \Rightarrow Einfach angeregte Determinanten (singles) wechselwirken nicht direkt mit dem HF-Grundzustand:

$$\langle \Phi_0 | \hat{H} | \Phi_i^a \rangle = 0 \tag{173}$$

Struktur der FCI-Matrix

In einer vereinfachten Schreibweise der FCI-Entwicklung

$$|\Psi\rangle = c_0|\Phi_0\rangle + c_S|S\rangle + c_D|D\rangle + c_T|T\rangle + c_Q|Q\rangle + \cdots$$
(174)

hat die symmetrische FCI-Matrix mit Brillouins Theorem und den Slater-Condon-Regel
n $(\langle S|H|Q\rangle=0,$ usw.) diese Form:

$$\begin{pmatrix}
\langle \Phi_0 | H | \Phi_0 \rangle & 0 & \langle \Phi_0 | H | D \rangle & 0 & 0 & \cdots \\
\langle S | H | S \rangle & \langle S | H | D \rangle & \langle S | H | T \rangle & 0 & \cdots \\
\langle D | H | D \rangle & \langle D | H | T \rangle & \langle D | H | Q \rangle & \cdots \\
\langle T | H | T \rangle & \langle T | H | Q \rangle & \cdots \\
\langle Q | H | Q \rangle & \cdots \\
\langle \vdots & \ddots & \ddots \\
\end{pmatrix}$$
(175)

Wegen den Slater-Condon-Regeln sind auch die hier von Null verschiedenen Blöcke nur dünn besetzt: z.B. ist ein Matrixelement

$$\langle D|H|Q\rangle \equiv \langle \Phi_{ij}^{ab}|H|\Phi_{klmn}^{cdef}\rangle \tag{176}$$

nur dann verschieden von Null, wenn

$$i, j \in \{k, l, m, n\} \quad \land \quad a, b \in \{c, d, e, f\}$$

$$(177)$$

und das trifft bei den allermeisten D- und Q-Determinanten nicht zu.

Alternative Sicht auf FCI

In sog. intermediär normierter Form lautet die FCI-Entwicklung:

$$|\Psi\rangle = |\Phi_0\rangle + \sum_{ia} c_i^a |\Phi_i^a\rangle + \sum_{\substack{i < j \\ a < b}} c_{ij}^{ab} |\Phi_{ij}^{ab}\rangle + \cdots$$
(178)

Wegen

$$\langle \Psi | \Psi \rangle = 1 + \sum_{ia} (c_i^a)^2 + \sum_{\substack{i < j \\ a < b}} (c_{ij}^{ab})^2 + \cdots$$
 (179)

ist dieses Ψ nicht im üblichen Sinn normiert. Stattdessen gilt jedoch:

$$\langle \Phi_0 | \Psi \rangle = 1 \tag{180}$$

Die Korrelationsenergie E_{corr} sei die Differenz zwischen der exakten Energie \mathcal{E} und der HF-Energie E (im Limit einer vollständigen Basis):

$$E_{corr} = \mathcal{E} - E \tag{181}$$

Multiplikation der Gleichung

$$(H-E)|\Psi\rangle = E_{corr}|\Psi\rangle \tag{182}$$

von links mit $\langle \Phi_0 |$ ergibt unter Ausnutzung von Gl. 180:

$$\langle \Phi_0 | H - E | \Psi \rangle = E_{corr} \langle \Phi_0 | \Psi \rangle = E_{corr}$$
(183)

Einsetzen der Entwicklung Gl. 178 liefert mit Brillouins Theorem und den Slater-Condon-Regeln

$$E_{corr} = \sum_{\substack{i < j \\ a < b}} c_{ij}^{ab} \langle \Phi_0 | H | \Phi_{ij}^{ab} \rangle$$
(184)

 \Rightarrow scheinbar wird die Korrelationsenergie nur von den doubles bestimmt!

Multiplikation von Gl. 182 von links mit $\langle \Phi_i^a |$ liefert jedoch analog:

$$E_{corr}c_i^a = \sum_{jb} c_j^b \langle \Phi_i^a | H - E | \Phi_j^b \rangle + \sum_{\substack{j < k \\ b < c}} c_{jk}^{bc} \langle \Phi_i^a | H | \Phi_{jk}^{bc} \rangle + \sum_{\substack{j < k \\ b < c}} c_{ijk}^{abc} \langle \Phi_i^a | H | \Phi_{ijk}^{abc} \rangle$$
(185)

 \Rightarrow Die doubles-Koeffizienten werden also durch die Koeffizienten der singles und triples beeinflußt \Rightarrow indirekter Einfluß anderer Anregungsgrade auf die Korrelationsenergie.

Multiplikation von Gl. 182 mit $\langle \Phi_{ij}^{ab} |$, $\langle \Phi_{ijk}^{abc} |$ usw. erzeugt eine Hierarchie von gekoppelten Gleichungen, die simultan gelöst werden müssen. Ihre Struktur ist identisch mit der FCI-Matrixstruktur.

FCI von H_2 in Minimalbasis

 H_2 in der Minimalbasis aus zwei 1s-STOs ϕ_1 und ϕ_2 hat die beiden MOs (s.o.)

$$\psi_1 \sim (\phi_1 + \phi_2)$$
 , $\psi_2 \sim (\phi_1 - \phi_2)$ (186)

Damit lautet der in dieser Basis "exakte" FCI-Ansatz:

$$|\Psi\rangle = |\Phi_0\rangle + c_1^2 |2\bar{1}\rangle + c_{\bar{1}}^{\bar{2}} |1\bar{2}\rangle + c_{\bar{1}}^2 |12\rangle + c_{\bar{1}}^{\bar{2}} |\bar{2}\bar{1}\rangle + c_{1\bar{1}}^{2\bar{2}} |2\bar{2}\rangle$$
(187)

 ψ_1 hat räumlich gerade Symmetrie und ψ_2 ungerade \Rightarrow keine der Determinanten mit beiden Funktionen hat mit $|\Phi_0\rangle$ oder $|2\bar{2}\rangle$ von Null verschiedene Matrixelemente \Rightarrow der FCI-Ansatz lautet tatsächlich:

$$|\Psi\rangle = |\Phi_0\rangle + c_{1\bar{1}}^{2\bar{2}}|2\bar{2}\rangle = |\Phi_0\rangle + c|2\bar{2}\rangle \tag{188}$$

Die FCI-Grundzustandsenergie ist also der kleinste Eigenwert von

$$\begin{pmatrix} \langle \Phi_0 | H | \Phi_0 \rangle & \langle \Phi_0 | H | 2\bar{2} \rangle \\ \langle 2\bar{2} | H | \Phi_0 \rangle & \langle 2\bar{2} | H | 2\bar{2} \rangle \end{pmatrix} \begin{pmatrix} 1 \\ c \end{pmatrix} = \mathcal{E} \begin{pmatrix} 1 \\ c \end{pmatrix}$$
(189)

Mit $\mathcal{E} - E_0 = E_{corr}$ und nach Subtraktion von

$$\begin{pmatrix} E_0 & 0\\ 0 & E_0 \end{pmatrix} \begin{pmatrix} 1\\ c \end{pmatrix}$$
(190)

von beiden Seiten erhalten wir die Form

$$\begin{pmatrix} 0 & K_{12} \\ K_{12} & 2\Delta \end{pmatrix} \begin{pmatrix} 1 \\ c \end{pmatrix} = E_{corr} \begin{pmatrix} 1 \\ c \end{pmatrix} , \qquad (191)$$

wobei wir die Integrale ausgewertet haben:

$$\langle \Phi_0 | H | \Phi_0 \rangle = E_0 = 2h_{11} + J_{11} \tag{192}$$

$$\langle \Phi_0 | H | 2\bar{2} \rangle = \langle 2\bar{2} | H | \Phi_0 \rangle = K_{12} \tag{193}$$

$$\langle 2\bar{2}|H - E_0|2\bar{2}\rangle = 2\Delta = 2h_{22} + J_{22} - E_0 = 2h_{22} + J_{22} - (2h_{11} + J_{11})$$
 (194)

Aus Gl. 191 erhalten wir sofort $cK_{12} = E_{corr}$ sowie $c = K_{12}/(E_{corr} - 2\Delta)$ und daraus den unteren Eigenwert:

$$E_{corr} = \Delta - \sqrt{\Delta^2 + K_{12}^2} \tag{195}$$

Im Rahmen der gegebenen Basis lautet die exakte Energie von H_2 also:

$$\mathcal{E} = E_0 + E_{corr} = 2h_{11} + J_{11} + \Delta - \sqrt{\Delta^2 + K_{12}^2}$$
(196)

Bei $R \to \infty$ gilt:

$$J_{11} = K_{12}$$
 , $\Delta = 0$, $h_{11} = h_{22} = E(H)$ (197)

 \Rightarrow bei FCI kompensiert die Korrelationsenergie den Term J_{11} und wir erhalten das richtige Dissoziationslimit:

$$\lim_{R \to \infty} \mathcal{E} = 2E(H) \tag{198}$$

Bei der HF-Lösung bleibt J_{11} unkompensiert \Rightarrow falsches Limit (ionische Anteile, s.o.).

Warnung!

Elektronenkorrelationsmethoden mit kleiner Basis sind sinnlos!

Figure 4.3 6-31 G^{**} potential energy curves for H_2 .

abgebrochenes CI: CISD und Verwandte

Abbruch der FCI-Entwicklung nach den singles und doubles liefert CISD. Formale Aufwandskalierung N^6 , mit Tricks lediglich ca. N^4

Vorteile:

• konzeptuell und rechnerisch einfach

Nachteile:

• Konvergenz mit Anregungstyp langsam:

Excitation level	Weight
0	0.9644945073
1	0.0009804929
2	0.0336865893
3	0.0003662339
4	0.0004517826
5	0.0000185090
6	0.0000017447
7	0.0000001393
8	0.000000011

Table 4.2 Weights of excited config-

aber Mitnahme höherer Anregungen (CISDT, CISDTQ) für Praxis zu teuer.

- intrinsische Fehler von CISD relativ groß: z.B. 1.7 pm in R_e
- nicht größenkonsistent (eine Rechnung für zwei nicht-wechselwirkende Systeme A und B liefert nicht dasselbe Resultat wie die Summe zweier Rechnungen für A und B getrennt)
- \bullet nicht größenextensiv (in einem System \mathcal{A}_n ist die Korrelationsenergie nicht proportional zu n; in einigen Beispielen verschwindet sie sogar im Limit $n \to \infty$)

multiconfiguration SCF (MCSCF)

Hartree-Fock-SCF: Optimierung der Orbitale (via MO-Koeffizienten) andere Korrelationsverfahren: Optimierung der CI-Koeffizienten MCSCF: gleichzeitige Optimierung von MO- und CI-Koeffizienten

Konvergenzverhalten problematisch durch viele, gekoppelte Parameter unterschiedlichen Charakters; daher:

- Lösung meist nicht als iteratives Eigenwertproblem, sondern mit (quasi-)Newton-Minimierungsverfahren
- Mitnahme von genügend vielen Determinanten meist nicht praktikabel
- Auswahl von der wichtigsten Determinanten indirekt, über Einteilung der Orbitale:

inaktive sind in allen CSFs doppelt besetzt

aktive sind zumindest in einigen CSFs besetzt

 $\mathbf{externe}$ bleiben in allen CSFs unbesetzt

Im "complete active space MCSCF" (CASSCF) macht man einen full-CI-Ansatz innerhalb dieser Regeln. Notation: [n,m]-CASSCF = n Elektronen in allen möglichen Weisen verteilt auf m Orbitale.

Anzahl der CSFs trotzdem problematisch hoch:

function	In a $[n, n]$ -CASSCF wave
n	Number of CSFs
2	3
4	20
6	175
8	1 764
10	19404
12	226 512
14	2760615

 Table 4.3
 Number of configurations

• typische Verwendung: Erzeugung einer Wellenfunktion, die die *statische Korrelation* qualitativ richtig beschreibt \rightarrow Referenzfunktionen für nachfolgende Multireferenzbehandlung der *dynamischen Korrelation* (MRCI, CASPT, ...; siehe TC-II)

Arten der Elektronenkorrelation

- **dynamisch:** "instantane" Wechselwirkung der Elektronen in ihrer Bewegung; durch r_{12} -Verfahren oder Linearkombination vieler CSFs beschreibbar.
- statisch: inhärenter Mehr-Determinanten-Charakter der Wellenfunktion, z.B. durch gewisse Spinzustände oder bei Dissoziation (s.o.); oft durch Linearkombination weniger CSFs bereits qualitativ korrekt beschreibbar.
- links-rechts: erhöhte Wahrscheinlichkeit dafür, die Elektronen in der Nähe von verschiedenen Atomkernen eines zweiatomigen Moleküls zu finden; eminent wichtig bei Dissoziation, aber nur ein Beitrag von vielen bei R_e .
- Winkel-Korr.: ermöglicht den Elektronen, möglichst unterschiedliche Winkel bzgl. einer Bindungsachse oder einem Atomzentrum einzunehmen.

innen-außen: ein Elektron in Kernnähe, ein anderes weit entfernt.

Entwicklung der Wellenfunktion des H₂-Grundzustands in natürliche Orbitale:

$$\Psi(1,2) = \sum_{i} c_i \psi_i(1) \psi_i(2) \qquad , \qquad \langle \psi_i | \psi_j \rangle = \delta_{ij}$$
(199)

mit der Ein-Elektronendichte $\rho(1)$ und den Besetzungszahlen ν_i :

$$\rho(1) = 2 \int |\Psi(1,2)|^2 d\mathbf{r}_2 = \sum_i \nu_i |\psi_i(1)|^2 \quad , \quad \nu_i = 2c_i^2 \tag{200}$$

Beiträge der verschiedenen natürlichen Orbitale am Gleichgewichtsabstand:

i	Symmetrie	Entartung	c_i	$ u_i$	$\% D_e$	R_e/a_0	Korr.typ
1	σ_{g}	1	+0.9910	1.9643	76.7	1.40	
2	σ_{u}	1	-0.0997	0.0199	87.3	1.42	links-rechts
3,4	π_u	2	-0.0653	0.0085	93.6	1.40	Winkel
5	σ_{g}	1	-0.0550	0.0061	97.6		innen-außen
6,7	π_g	2	-0.0121	0.0003	98.1		
8	σ_{g}	1	-0.0100	0.0002	98.4		
9	σ_u	1	-0.0098	0.0002	98.8		
$10,\!11$	δ_g	2	-0.0093	0.0002	99.2		
$12,\!13$	π_u	2	-0.0092	0.0002	99.5		
14	σ_{u}	1	-0.0067	0.0001	99.6		
÷	:	:	:		:		
25	σ_u	1	-0.0022		99.7		
:	÷	:	:		:		

coupled-cluster-Verfahren (CC)

Ohne ungerade Anregungen lautet die FCI-Wellenfunktion:

$$|\Psi\rangle = |\Phi_0\rangle + \sum_{\substack{i < j \\ a < b}} c_{ij}^{ab} |\Phi_{ij}^{ab}\rangle + \sum_{\substack{i < j < k < l \\ a < b < c < d}} c_{ijkl}^{abcd} |\Phi_{ijkl}^{abcd}\rangle + \cdots$$
(201)

Wie oben liefert Einsetzen dieser Entwicklung in den Ausdruck

$$(\hat{H} - E)|\Psi\rangle = E_{corr}|\Psi\rangle$$
 (202)

und Multiplikation mit $\langle \Phi_0 |$, $\langle \Phi_{ij}^{ab} |$, $\langle \Phi_{ijkl}^{abcd} |$, usw., die Hierarchie der gekoppelten CI-Gleichungen:

$$E_{corr} = \sum_{\substack{k < l \\ c < d}} c_{kl}^{cd} \langle \Phi_0 | \hat{H} | \Phi_{kl}^{cd} \rangle$$
(203)

$$E_{corr}c_{ij}^{ab} = \langle \Phi_{ij}^{ab}|\hat{H}|\Phi_0\rangle + \sum_{\substack{k(204)
:$$

Ohne Abbruch der Hierarchie ist das FCI. Mit Abbruch durch $c_{ijkl}^{abcd} = 0$ erhält man CID. Andere Art des Abbruchs: Approximation der Vierfach-Koeffizienten durch Produkte aus Zweifach-Koeffizienten:

$$c_{ijkl}^{abcd} \approx c_{ij}^{ab} c_{kl}^{cd} + \{ c_{ij}^{ab} * c_{kl}^{cd} \}$$
(205)

Man erhält schließlich die CCD-Gleichung:

$$\langle \Phi_{ij}^{ab} | \hat{H} | \Phi_0 \rangle + \sum_{\substack{k < l \\ c < d}} c_{kl}^{cd} \langle \Phi_{ij}^{ab} | \hat{H} - E | \Phi_{kl}^{cd} \rangle + \sum_{\substack{k < l \\ c < d}} \langle \Phi_0 | \hat{H} | \Phi_{kl}^{cd} \rangle \{ c_{ij}^{ab} * c_{kl}^{cd} \} = 0$$
(206)

Mit Berücksichtigung der singles hätten wir hier CCSD erhalten.

CC-Verfahren sind

- nichtlinear \Rightarrow iterative Lösung nötig;
- formal aufwendig: $N^6 N^7$; in *linear-scaling*-Varianten jedoch auf N^1 reduzierbar;
- nicht variationell \Rightarrow erhaltene Energien sind keine oberen Schranken zu den exakten Energien;
- größenkonsistent;
- können durch störungstheoretische Korrekturen für höhere Ordnungen effektiv ergänzt werden: CCSD(T) = CCSD mit störungstheoretischer Korrektur für triples;
- sehr genau: intrinsische Fehler: Bindungsabstände: 0.8 pm für CCSD, 0.2 pm für CCSD(T) Bindungswinkel: 0.4° für CCSD, 0.1-0.2° für CCSD(T) Ausnahmen: Multireferenzfälle

Abstrakte Vielteilchen-Störungstheorie (MBPT)

Die Wellenfunktionen und Energien für ein ungestörtes Problem seien bekannt:

$$\hat{H}^{(0)}\Psi^{(0)} = E^{(0)}\Psi^{(0)} \tag{207}$$

nicht jedoch für ein durch einen linearen Störterm erweiterten Operator:

$$\hat{H} = \hat{H}^{(0)} + \lambda \hat{H}^{(1)} \tag{208}$$

Wir zerlegen die (noch unbekannte) exakte Energie und Wellenfunktion formal gemäß

$$E = E^{(0)} + \lambda E^{(1)} + \lambda^2 E^{(2)} + \lambda^3 E^{(3)} + \cdots$$
(209)

$$\Psi = \Psi^{(0)} + \lambda \Psi^{(1)} + \lambda^2 \Psi^{(2)} + \lambda^3 \Psi^{(3)} + \cdots$$
(210)

Einsetzen der Entwicklungen Gln. 208, 209, 210 in die Schrödingergleichung ergibt nach Zusammenfassung der Terme gleicher Ordnung in λ die Hierarchie der Störgleichungen:

$$0 = \left(\hat{H}^{(0)} - E^{(0)}\right) |\Psi^{(0)}\rangle \tag{211}$$

$$0 = \left(\hat{H}^{(0)} - E^{(0)}\right) |\Psi^{(1)}\rangle + \left(\hat{H}^{(1)} - E^{(1)}\right) |\Psi^{(0)}\rangle$$
(212)

$$0 = \left(\hat{H}^{(0)} - E^{(0)}\right) |\Psi^{(2)}\rangle + \left(\hat{H}^{(1)} - E^{(1)}\right) |\Psi^{(1)}\rangle - E^{(2)} |\Psi^{(0)}\rangle$$
(213)

$$0 = \left(\hat{H}^{(0)} - E^{(0)}\right) |\Psi^{(3)}\rangle + \left(\hat{H}^{(1)} - E^{(1)}\right) |\Psi^{(2)}\rangle - E^{(2)} |\Psi^{(1)}\rangle - E^{(3)} |\Psi^{(0)}\rangle$$
(214)
:

$$0 = \left(\hat{H}^{(0)} - E^{(0)}\right) |\Psi^{(n)}\rangle + \left(\hat{H}^{(1)} - E^{(1)}\right) |\Psi^{(n-1)}\rangle - \sum_{m=2}^{n} E^{(m)} |\Psi^{(m-n)}\rangle$$
(215)

Operation mit $\langle \Psi^{(0)} |$ von links auf diese Gleichungen liefert unter Beachtung von $\left(\hat{H}^{(0)} - E^{(0)}\right) |\Psi^{(0)}\rangle = 0 = \langle \Psi^{(0)} | \left(\hat{H}^{(0)} - E^{(0)}\right)$ bei intermediärer Normierung:

$$E^{(0)} = \langle \Psi^{(0)} | \hat{H}^{(0)} | \Psi^{(0)} \rangle$$
(216)
$$= \langle \bar{\chi}^{(0)} | \hat{\pi}^{(1)} | \bar{\chi}^{(0)} \rangle$$
(217)

$$E^{(1)} = \langle \Psi^{(0)} | \hat{H}^{(1)} | \Psi^{(0)} \rangle$$
(217)

$$E^{(2)} = \langle \Psi^{(0)} | \hat{H}^{(1)} | \Psi^{(1)} \rangle$$
(218)

$$E^{(3)} = \langle \Psi^{(0)} | \hat{H}^{(1)} | \Psi^{(2)} \rangle$$
(219)

$$:
 E^{(n)} = \langle \Psi^{(0)} | \hat{H}^{(1)} | \Psi^{(n-1)} \rangle
 (220)$$

Mit einigen Manipulationen kann man jedoch zeigen:

$$E^{(2n+1)} = \langle \Psi^{(n)} | \hat{H}^{(1)} | \Psi^{(n)} \rangle - \sum_{k,\ell=1}^{n} E^{(2n+1-k-\ell)} \langle \Psi^{(k)} | \Psi^{(\ell)} \rangle$$
(221)

Zur Bestimmung von $E^{(2n+1)}$ genügt also die Wellenfunktion $\Psi^{(n)}$.

Møller-Plesset-Störungstheorie 2. Ordnung (MP2)

Bei der Møller-Plesset-Störungstheorie wählt man als $\hat{H}^{(0)}$ die Summe der Einteilchen-Fockoperatoren

$$\hat{H}^{(0)} = \sum_{i} \hat{f}(i) = \sum_{i} \left(\hat{h}(i) + \hat{g}(i) \right)$$
(222)

also lautet der Störoperator:

$$\hat{H}^{(1)} = \hat{H} - \hat{H}^{(0)} = \frac{1}{2} \sum_{i \neq j} \frac{1}{r_{ij}} - \sum_{i} \hat{g}(i) , \qquad (223)$$

Dadurch ist

- die Störung nicht wirklich "klein", aber
- dies ist die einzige größenkonsistente/-extensive Wahl, und
- die ungestörten Funktionen Φ_I sind exakt(!) bekannt: die HF-Determinante $\Phi_0 = \Psi^{(0)}$, deren Einfachanregungen Φ_i^a , Zweifachanregungen Φ_{ij}^{ab} , usw.

Diese Φ_I bilden eine vollständige Basis \Rightarrow die Störfunktionen können in diese Basis entwickelt werden:

$$\Psi^{(1)} = \sum_{I} c_{I}^{(1)} \Phi_{I}$$
(224)

$$\Psi^{(2)} = \sum_{I} c_{I}^{(2)} \Phi_{I} \tag{225}$$

Der Energieerwartungswert der Wellenfunktion nullter Ordnung (mit $\lambda = 1$) ergibt sich aus den Gln. 216 und 217; es ist die Hartree-Fock-Energie E_0 :

$$\langle \Psi^{(0)} | \hat{H} | \Psi^{(0)} \rangle = E^{(0)} + E^{(1)} = E_0$$
(226)

Die Koeffizienten der Wellenfunktion erster Ordnung erhält man durch Projektion von Gl. 212 von links mit $\Phi_I \ (\neq \Phi_0 = \Psi^{(0)})$:

$$0 = \sum_{J} \langle \Phi_{I} | \hat{H}^{(0)} - E^{(0)} | \Phi_{J} \rangle c_{J}^{(1)} + \langle \Phi_{I} | \hat{H}^{(1)} - E^{(1)} | \Psi^{(0)} \rangle$$
(227)

$$= \sum_{J} \langle \Phi_{I} | \hat{H}^{(0)} - E^{(0)} | \Phi_{J} \rangle c_{J}^{(1)} + \langle \Phi_{I} | \hat{H}^{(1)} | \Phi_{0} \rangle$$
(228)

Da die Φ_I Eigenfunktionen von $\hat{H}^{(0)}$ sind und da verschiedene Slaterdeterminanten orthogonal zueinander sind, folgt sofort:

$$c_I^{(1)} = -\frac{\langle \Phi_I | H | \Phi_0 \rangle}{\langle \Phi_I | \hat{H}^{(0)} - E^{(0)} | \Phi_I \rangle}$$
(229)

Jede Slaterdeterminante ist Eigenfunktion von $\hat{H}^{(0)}$ mit leicht anzugebender Energie, z.B. bei einer Zweifachanregung:

$$\hat{H}^{(0)}|\Phi_{ij}^{ab}\rangle = (E^{(0)} - \epsilon_i - \epsilon_j + \epsilon_a + \epsilon_b)|\Phi_{ij}^{ab}\rangle$$
(230)

In der Basis der Slaterdeterminanten sind die in Gl. 229 benötigten Diagonalelemente einfach Summen und Differenzen der Hartree-Fock-Eigenwerte:

$$\langle \Phi_i^a | \hat{H}^{(0)} - E^{(0)} | \Phi_i^a \rangle = \epsilon_a - \epsilon_i$$
(231)

$$\langle \Phi_{ij}^{ab} | \hat{H}^{(0)} - E^{(0)} | \Phi_{ij}^{ab} \rangle = \epsilon_a + \epsilon_b - \epsilon_i - \epsilon_j$$
(232)

Da zur Störfunktion erster Ordnung nur die doppelt angeregten Konfigurationen beitragen (alle anderen Matrixelemente $\langle \Phi_I | \hat{H} | \Phi_0 \rangle$ sind Null, s.o. Brillouins Theorem und CI), lautet die explizite Form von Gl. 229:

$$c_{ab}^{ij\,(1)} = -\frac{\langle \Phi_{ij}^{ab} | \dot{H} | \Phi_0 \rangle}{\epsilon_a + \epsilon_b - \epsilon_i - \epsilon_j} \tag{233}$$

Damit ergibt sich die Energiekorrektur zweiter Ordnung:

$$E^{(2)} = \langle \Phi^{(0)} | \hat{H}^{(1)} | \Psi^{(1)} \rangle$$
(234)

$$= \sum_{I} c_{I}^{(1)} \langle \Phi^{(0)} | \hat{H}^{(1)} | \Phi_{I} \rangle$$
(235)

$$= \sum_{i>j}^{occ} \sum_{a>b}^{vir} \frac{\langle \Phi_0 | \hat{H}^{(1)} | \Phi_{ij}^{ab} \rangle \langle \Phi_{ij}^{ab} | \hat{H}^{(1)} | \Phi_0 \rangle}{\epsilon_i + \epsilon_j - \epsilon_a - \epsilon_b}$$
(236)

$$= \sum_{i>j}^{occ} \sum_{a>b}^{vir} \frac{\left[(ai|bj) - (aj|bi)\right]^2}{\epsilon_i + \epsilon_j - \epsilon_a - \epsilon_b}$$
(237)

mit verallgemeinerten Austauschintegralen $K_{ab}^{ij} = (ai|bj).$

Für höhere Ordnungen ergeben sich zunehmend kompliziertere Ausdrücke für Energiekorrekturen und Stör-Wellenfunktionen. Zwar läßt sich alles immer noch mit Matrixelementen von $\hat{H}^{(1)}$ in den Funktionen Φ_I ausdrücken, aber in diese Φ_I -Entwicklungen gehen immer höhere Anregungstypen ein \Rightarrow viel mehr Determinanten \Rightarrow bedeutend höherer Aufwand (s.u.)
Charakteristika von MP2

- der MP2-Aufwand skaliert formal wie N^5 (wegen der Transformation der 2e⁻-Integrale von AO- in MO-Basis), aber nicht alle 2e⁻-Integrale nötig \Rightarrow bis ca. 100–200 Basisfunktionen ist MP2 nicht teurer als HF.
- schon mehrfach verfügbar: linear skalierendes MP2 (LMP2)
- \bullet MP2 liefert 80–90% der Korrelationsenergie
- höhere Ordnungen und höhere Anregungen werden schnell teurer: MP4(SDQ) skaliert wie N^6 , MP4(SDTQ) wie N^7 , MP5 wie N^8 , MP6 wie N^9 . MP4(SDTQ) liefert 95–98% der Korrelationsenergie
- MPn ist nicht variationell, aber das ist in Praxis nicht so wichtig:
 - Fehler in absoluten Energien noch so groß, daß diese nicht interessant;
 - Relativenergien $\Delta E = E_1 E_2$ wichtiger; beachte: selbst wenn E_1 und E_2 variationell sind, gibt es *keine* Ober- oder Untergrenze für ΔE !
- \bullet viel wichtiger: MP
 nist größenkonsistent und -extensiv (formal beweisbar für alle Ordnungen
 n)
 - \Rightarrow Fehler können für verschieden große Systeme relativ konstant bleiben.

MP2 für H_2 in Minimalbasis

Die FCI-Korrelationsenergie für H₂ in Minimalbasis lautet:

$$E_{corr} = \Delta - \sqrt{\Delta^2 + K_{12}^2} = \Delta - \Delta \sqrt{1 + \frac{K_{12}^2}{\Delta^2}}$$
 (238)

mit den Größen

$$\Delta = \frac{1}{2} \langle 2\bar{2} | \hat{H} - E_0 | 2\bar{2} \rangle \quad , \qquad K_{12} = \langle 2\bar{2} | \hat{H} | \Phi_0 \rangle \tag{239}$$

In der Nähe des Gleichgewichtsabstands gilt in guter Näherung

=

$$\Delta \gg K_{12} . \tag{240}$$

Also können wir die Wurzel in eine Reihe entwickeln:

$$E_{corr} \approx \Delta - \Delta \left(1 + \frac{1}{2} \frac{K_{12}^2}{\Delta^2} - \frac{1}{8} \frac{K_{12}^4}{\Delta^4} \cdots \right)$$
(241)

$$\approx -\frac{K_{12}^2}{2\Delta} \tag{242}$$

$$= -\frac{|\langle 2\bar{2}|\hat{H}|\Phi_0\rangle|^2}{\langle 2\bar{2}|\hat{H}-E_0|2\bar{2}\rangle}$$
(243)

$$\approx -\frac{|\langle 2\bar{2}|\hat{H}|\Phi_{0}\rangle|^{2}}{\langle 2\bar{2}|\hat{H}^{(0)} - E^{(0)}|2\bar{2}\rangle}$$
(244)

$$= E_{MP}^{(2)}$$
 (245)

 \Rightarrow in diesem Fall ist MP2 eine gute Näherung an das exakte Resultat! Wegen

$$\lim_{R \to \infty} \Delta = 0 \qquad , \qquad \lim_{R \to \infty} K_{12} = const. \neq 0 \tag{246}$$

gilt weiter vom Gleichgewichtsabstand entfernt:

$$\Delta < K_{12} \tag{247}$$

 \Rightarrow die implizite Reihenentwicklung divergiert;

 \Rightarrow bei großen Kernabständen wird die MP2-Energie meist sehr schlecht.

(anderes Symptom: bei wachsendem Abstand entarten Orbitale und bei $\epsilon_a + \epsilon_b \approx \epsilon_i + \epsilon_j$ geht der Energienenner gegen Null.)

Fig. 14.13. The CASPT2 dissociation of the C_{2v} water molecule in the cc-pVDZ basis (in atomic units) for a fixed HOH bond angle of 110.565°. On the left, we have plotted the CASPT2 potential-energy curve (black line) together with the corresponding FCI (grey line) and MP2 (dotted line) curves; on the right, we have plotted the difference between the CASPT2 and FCI energies (black line) and the MP2 and FCI energies (dotted line).

Konvergenz der MP-Entwicklung

- monoton konvergent nur in den seltensten Fällen
- typisches Praxisverhalten: oszillativ

Figure 4.12 Typical oscillating behaviour of results obtained with the MP method

- kann sogar divergent werden für
 - Multireferenz-Probleme
 - höhere Ordnungen
 - große, diffuse Basissätze

Fig. 14.6. Møller–Plesset expansions for the HF molecule. For each order in the perturbation series, we have plotted the difference between the Møller–Plesset energy and the corresponding FCI energy (in E_h).

MP2-Resultate

- intrinsische Fehler: Bindungslängen: 0.5 pm; Bindungswinkel: 0.2°; Dipolmomente: 0.05 D
- repräsentative Resultate für Bindungslängen:

 Table 15.4
 Errors relative to experiment in the calculated bond distances (pm). The calculations have been carried out with all electrons correlated

		HF	MP2	MP3	MP4	CCSD	CCSD(T)	CISD
$\overline{\Delta}$	cc-pVDZ	-1.80	1.35	0.48	1.83	1.07	1.68	0.26
	cc-pVTZ	-2.63	-0.12	-1.06	0.33	-0.63	0.01	-1.43
	cc-pVQZ	-2.74	-0.23	-1.19	0.27	-0.79	0.12	-1.66
Δ_{std}	cc-pVDZ	2.25	0.75	0.98	0.82	0.76	0.80	1.24
	cc-pVTZ	2.23	0.69	0.93	0.60	0.66	0.24	1.34
	cc-pVQZ	2.28	0.62	1.03	0.49	0.78	0.20	1.51
$\overline{\Delta}_{abs}$	cc-pVDZ	1.94	1.35	0.87	1.83	1.19	1.68	0.95
	cc-pVTZ	2.63	0.56	1.06	0.47	0.64	0.20	1.44
	cc-pVQZ	2.74	0.51	1.19	0.38	0.80	0.16	1.67
Δ_{max}	cc-pVDZ	7.49	3.16	2.72	3.85	1.99	4.56	3.86
	cc-pVTZ	8.28	1.61	3.84	1.80	2.59	0.45	5.16
	cc-pVQZ	8.45	1.66	4.21	1.51	3.04	0.61	5.69

- die Güte der MP2-Resultate beruht z.T. auf Fehlerkompensation; es ist nicht ganz klar, ob diese Kompensation zufällig oder systematisch ist.
- beachte: cc-pVDZ-Basis ist für korrelierte Methoden etwas zu klein!

typischer Methodenvergleich (mittlerer Fehler mit cc-pVQZ-Basis aus obiger Tabelle):

Fig. 15.5. The relationships between the calculated equilibrium bond distances for the standard models (in pm).

Elektronendichte und Dichtematrizen

Eine formale Erweiterung der Elektronendichte ist die Dichtematrix 1. Ordnung:

$$\gamma_1(\mathbf{x}_1', \mathbf{x}_1) = N \int \cdots \int \Psi(\mathbf{x}_1' \mathbf{x}_2 \dots \mathbf{x}_N) \Psi^*(\mathbf{x}_1 \mathbf{x}_2 \dots \mathbf{x}_N) d\mathbf{x}_2 \cdots d\mathbf{x}_N$$
(248)

Auf der Diagonalen dieser Matrix steht die "normale" Elektronendichte:

$$\rho(\mathbf{r}_1) = \rho_1(\mathbf{r}_1, \mathbf{r}_1) = N \int \cdots \int |\Psi|^2 ds_1 d\mathbf{x}_2 \cdots d\mathbf{x}_N$$
(249)

Damit kann man Matrixelemente von allgemeinen Einelektronenoperatoren ausdrücken:

$$\langle \mathcal{O}_1 \rangle = \langle \Psi | \mathcal{O}_1 | \Psi \rangle = tr(\mathcal{O}_1 \gamma_N) = \int [h_1(\mathbf{x}_1) \gamma_1(\mathbf{x}_1', \mathbf{x}_1)]_{\mathbf{x}_1' = \mathbf{x}_1} d\mathbf{x}_1$$
(250)

Analog kann man eine Dichtematrix 2. Ordnung definieren:

$$\gamma_2(\mathbf{x}_1'\mathbf{x}_2', \mathbf{x}_1\mathbf{x}_2) = N(N-1) \int \cdots \int \Psi(\mathbf{x}_1'\mathbf{x}_2'\mathbf{x}_3 \dots \mathbf{x}_N) \Psi^*(\mathbf{x}_1\mathbf{x}_2\mathbf{x}_3 \dots \mathbf{x}_N) d\mathbf{x}_3 \cdots d\mathbf{x}_N$$
(251)

Sie hat die Elektronenpaardichte $\rho_2(\mathbf{r}_1, \mathbf{r}_2)$ als Diagonalelement.

Damit kann man Matrixelemente allgemeiner Zweielektronenoperatoren ausdrücken:

$$\langle \mathcal{O}_2 \rangle = \langle \Psi | \mathcal{O}_2 | \Psi \rangle = tr(\mathcal{O}_2 \gamma_N) = \int \int [g_2(\mathbf{x}_1, \mathbf{x}_2) \gamma_2(\mathbf{x}_1' \mathbf{x}_2', \mathbf{x}_1 \mathbf{x}_2)]_{\mathbf{x}_1' = \mathbf{x}_1, \mathbf{x}_2' = \mathbf{x}_2} d\mathbf{x}_1 d\mathbf{x}_2$$
(252)

Daher erhalten wir für die Energie, also den Erwartungswert des Hamiltonoperators

$$\hat{H} = \sum_{i} \left(-\frac{1}{2} \nabla_{i}^{2} \right) + \sum_{i} v(\mathbf{r}_{i}) + \sum_{i < j} \frac{1}{r_{ij}}$$
(253)

$$= \sum_{i} \left(-\frac{1}{2} \nabla_{i}^{2} \right) + \sum_{i\alpha} \frac{-Z_{\alpha}}{r_{i\alpha}} + \sum_{i < j} \frac{1}{r_{ij}} , \qquad (254)$$

nach Spinintegration folgenden Ausdruck:

$$E = E[\rho_2(\mathbf{r}_1\mathbf{r}_2, \mathbf{r}_1\mathbf{r}_2)]$$

=
$$\int [-\frac{1}{2}\nabla_1^2 \rho_1(\mathbf{r}_1', \mathbf{r}_1)]_{\mathbf{r}_1'=\mathbf{r}_1} d\mathbf{r}_1 + \int v(\mathbf{r})\rho(\mathbf{r})d\mathbf{r} + \int \int \frac{1}{r_{12}}\rho_2(\mathbf{r}_1, \mathbf{r}_2)d\mathbf{r}_1 d\mathbf{r}_2 \qquad (255)$$

Beachte:

- Die Schreibweise $E[\rho_2]$ heißt: Die Energie ist ein *Funktional* der Dichtematrix 2. Ordnung. Das ist nichts Neues: Genauso hätten wir vorher schon schreiben können: $E[\Psi] = \langle \Psi | \hat{H} | \Psi \rangle$, E ist ein Funktional der Wellenfunktion.
- Bis Gl. 255 wurden keinerlei Näherungen gemacht \Rightarrow die exakte(!) Energie läßt sich als Funktional der Dichtematrix zweiter Ordnung schreiben.

In der Hartree-Fock-Näherung ist die Wellenfunktion eine einzelne Slaterdeterminante aus Spinorbitalen. In diesem Fall kann man die Dichtematrix 2. Ordnung durch die Dichtematrix 1. Ordnung ausdrücken:

$$\gamma_2(\mathbf{x}_1'\mathbf{x}_2', \mathbf{x}_1\mathbf{x}_2) = \frac{1}{2} \begin{vmatrix} \gamma_1(\mathbf{x}_1', \mathbf{x}_1) & \gamma_1(\mathbf{x}_2', \mathbf{x}_1) \\ \gamma_1(\mathbf{x}_1', \mathbf{x}_2) & \gamma_1(\mathbf{x}_2', \mathbf{x}_2) \end{vmatrix}$$
(256)

$$= \frac{1}{2} [\gamma_1(\mathbf{x}_1', \mathbf{x}_1) \gamma_1(\mathbf{x}_2', \mathbf{x}_2) - \gamma_1(\mathbf{x}_1', \mathbf{x}_2) \gamma_1(\mathbf{x}_2', \mathbf{x}_1)]$$
(257)

Nach Spinintegration lautet daher die HF-Energie:

$$E_{HF}[\rho_{1}] = \int [-\frac{1}{2} \nabla_{1}^{2} \rho_{1}(\mathbf{r}_{1}', \mathbf{r}_{1})]_{\mathbf{r}_{1}'=\mathbf{r}_{1}} d\mathbf{r}_{1} + \int v(\mathbf{r})\rho(\mathbf{r})d\mathbf{r} + \frac{1}{2} \int \int \frac{1}{r_{12}} \rho(\mathbf{r}_{1})\rho(\mathbf{r}_{2})d\mathbf{r}_{1}d\mathbf{r}_{2} - \frac{1}{2} \int \int \frac{1}{r_{12}} [\rho_{1}^{\alpha}(\mathbf{r}_{1}, \mathbf{r}_{2})\rho_{1}^{\alpha}(\mathbf{r}_{2}, \mathbf{r}_{1}) + \rho_{1}^{\beta}(\mathbf{r}_{1}, \mathbf{r}_{2})\rho_{1}^{\beta}(\mathbf{r}_{2}, \mathbf{r}_{1})] = T[\rho_{1}] + V_{ne}[\rho] + J[\rho] - K[\rho_{1}]$$
(259)

 \Rightarrow daher plausibel: Grundideen der Dichtefunktionaltheorie:

- Ψ ist eine 4*N*-dimensionale Funktion: viel zu kompliziert! Volle Information über Energie *E* bereits in der 6-dimensionalen Funktion $\rho_2(\mathbf{r}_1\mathbf{r}_2, \mathbf{r}_1\mathbf{r}_2)$ (insbes.: unabhängig von Anzahl *N* der Elektronen!)
- weitere Vereinfachung: approximiere(?) Energie als Funktional der Dichte $\rho(\mathbf{r}_1)$

Hohenberg-Kohn-Theoreme

Grundsätzliche Möglichkeit einer auf der Dichte $\rho(\mathbf{r}_1)$ basierenden Theorie:

Nach bisheriger Betrachtung gilt für beliebige Systeme:

$$N, v \xrightarrow{\text{bestimmt}} \hat{H} \xrightarrow{\text{bestimmt}} \Psi \xrightarrow{\text{bestimmt}} E, \dots$$
 (260)

1. Theorem von Hohenberg und Kohn:

Umgekehrt gilt aber auch:

$$\rho(\mathbf{r}_1) \xrightarrow{\text{bestimmt}} N, v$$
(261)

Da immer noch N und v letztlich die Energie E (und alle Moleküleigenschaften) bestimmen, muß es ein (exaktes!) Energie-Funktional der Dichte (nicht: der Dichtematrizen 1. und 2. Ordnung) geben. Man kann es allgemein schreiben als:

$$E[\rho] = V_{ne}[\rho] + F[\rho]$$
(262)

$$= \int \rho(\mathbf{r})v(\mathbf{r})d\mathbf{r} + T[\rho] + V_{ee}[\rho]$$
(263)

$$= \int \rho(\mathbf{r})v(\mathbf{r})d\mathbf{r} + T[\rho] + J[\rho] + \text{nicht-klass.Term}$$
(264)

Wichtige Punkte:

- der Teil $F[\rho]$ des Funktionals ist *universell* !
- der "nicht-klassische Term" muß auch Korrekturen dafür enthalten, daß andere Teile von $E[\rho]$ (z.B. $T[\rho]$) als Funktionale der Dichte (anstelle der Dichtematrizen) geschrieben werden.

2. Theorem von Hohenberg und Kohn:

Analog zum Variationsprinzip für Wellenfunktionen gilt für eine Versuchsdichte $\tilde{\rho}(\mathbf{r})$ mit $\tilde{\rho}(\mathbf{r}) \geq 0$ und $\int \tilde{\rho}(\mathbf{r}) d\mathbf{r} = N$ und die exakte Grundzustandsenergie E_0 des Systems:

$$E_0 \le E[\tilde{\rho}] , \qquad (265)$$

wobei das Gleichheitszeichen nur für die exakte Dichte $\rho(\mathbf{r})$ gilt.

 \Rightarrow zur Bestimmung/Optimierung von $\rho(\mathbf{r})$ kann man das Variationsprinzip verwenden.

(Technische Detailprobleme (N-Darstellungsproblem und v-Darstellungsproblem der Dichte) sind heute gelöst bzw. nicht mehr praxisrelevant.)

Thomas-Fermi-Dirac-Theorie

Eine frühe Standardform einer reinen Dichtefunktionaltheorie wurde von Thomas, Fermi und Dirac aufgestellt:

$$E_{TFD}[\rho] = C_F \int \rho(\mathbf{r})^{5/3} d\mathbf{r} + \int \rho(\mathbf{r}) v(\mathbf{r}) d\mathbf{r} + J[\rho] - C_x \int \rho(\mathbf{r})^{4/3} d\mathbf{r}$$
(266)

mit

$$C_F = \frac{3}{10} (3\pi^2)^{2/3} \qquad C_x = \frac{3}{4} (3/\pi)^{1/3}$$
(267)

Dabei ist

- das Funktional der kinetischen Energie das eines nicht-wechselwirkenden, homogenen Elektronengases (Thomas und Fermi);
- das Austauschfunktional gilt ebenfalls für das homogene Elektronengas (Dirac).

Praktisch unbrauchbar in der Chemie:

- schlechte Resultate bereits für Atome (Energie des H-Atoms um 54% zu niedrig);
- keine (!) chemischen Bindungen.

Gradientenkorrekturen (s.u.) zu TFD erlauben die Existenz chemischer Bindungen, aber quantitative Resultate immer noch indiskutabel.

Kohn-Sham-Verfahren

Hauptproblem von TFD: Term der kinetischen Energie zu ungenau.

Ausweg: Definiere ein nicht-wechselwirkenden Referenzsystem ohne Elektron-Elektron-Abstoßung

$$\hat{H}_s = \sum_i \left(-\frac{1}{2}\nabla_i^2\right) + \sum_i v_s(\mathbf{r}) \tag{268}$$

Die exakte Gesamtwellenfunktion Ψ_s dafür ist eine einfache Slaterdeterminante aus Spinorbitalen ψ_i , und die kinetische Energie ist exakt gegeben durch

$$T_s[\rho] = \langle \Psi_s | \sum_i (-\frac{1}{2} \nabla_i^2) | \Psi_s \rangle$$
(269)

$$= \sum_{i} \langle \psi_i | -\frac{1}{2} \nabla^2 | \psi_i \rangle \tag{270}$$

und die Dichte ist gegeben als

$$\rho(\mathbf{r}) = \sum_{i} |\psi_i(\mathbf{r})|^2 \tag{271}$$

Das unbekannte Funktional $F[\rho]$ kann damit geschrieben werden als:

$$F[\rho] = T_s[\rho] + J[\rho] + E_{xc}[\rho]$$
(272)

Ublicherweise definiert man dann für alle Terme außer der kinetischen Energie ein effektives Potential:

$$v_{eff}(\mathbf{r}) = v(\mathbf{r}) + \frac{\delta J[\rho]}{\delta \rho(\mathbf{r})} + \frac{\delta E_{xc}[\rho]}{\delta \rho(\mathbf{r})}$$
(273)

$$= v(\mathbf{r}) + \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r} + v_{xc}(\mathbf{r})$$
(274)

Dabei handelt es sich um ein Einteilchen-Potential \Rightarrow Minimierung der Energie durch Variation der (orthonormalen) Orbitale liefert quasi-separierte Einteilchen-Kohn-Sham-Gleichungen für die Kohn-Sham-Orbitale ψ_i :

$$\left(-\frac{1}{2}\nabla^2 + v_{eff}\right)\psi_i = \epsilon_i\psi_i \tag{275}$$

Wichtige Punkte:

- letztlich wird im KS-Verfahren $T[\rho]$ durch $T_s[\rho]$ ersetzt, das dann exakt behandelt wird;
- der Unterschied zwischen beiden Termen ist "gering" (selbe Größenordnung wie Korrelationsenergie) und soll mit eingehen in den neuen Term $E_{xc}[\rho]$;
- die Separation der Gln. 275 ist nicht vollständig, da v_{eff} über Gl. 274 von der Dichte und damit über Gl. 271 von den anderen Orbitalen abhängt; daher sind die Gln. 275 wie bei HF-SCF iterativ zu lösen;
- Gln. 275 sind fast genau dieselben wie bei HF-SCF, bis auf den neuen Term $E_{xc}[\rho]$ anstelle des HF-Austauschterms;
- im Unterschied zu HF wäre jedoch KS exakt, wenn das Austausch-Korrelations-Funktional $E_{xc}[\rho]$ exakt bekannt wäre.

local density approximation (LDA)

Einfachste Näherung an das unbekannte $E_{xc}[\rho]$:

$$E_{xc}^{LDA}[\rho] = \int \rho(\mathbf{r}) \epsilon_{xc}(\rho) d\mathbf{r}$$
(276)

wobei $\epsilon_{xc}(\rho)$ die Austausch- und Wechselwirkungsenerige pro Elektron in einem homogenen Elektronengas der Dichte ρ darstellt. Diese Näherung heißt lokal, weil das sich daraus ergebende Austausch-Korrelations-Potential v_{xc} nur eine Funktion der Dichte am jeweiligen Punkt ist (und nicht noch Ableitungen oder Integrale der Dichte involviert).

Nach der formalen Aufteilung

$$\epsilon_{xc}(\rho) = \epsilon_x(\rho) + \epsilon_c(\rho) \tag{277}$$

wählt man:

• für den Austausch die Dirac-Formel (wie bei TFD):

$$\epsilon_x[\rho] = -\frac{3}{4} \sqrt[3]{\frac{3}{\pi}\rho(\mathbf{r})}$$
(278)

Aus historischen Gründen nennt man dies auch Slater-Funktional (abgekürzt: S).

 für die Korrelation Resultate von numerischen Quanten-Monte-Carlo-Rechnungen von Ceperley und Alder für das homogene Elektronengas, bzw. den daran von Vosko, Wilk und Nusair angepaßten analytischen Ausdruck (Abkürzung: VWN).

In der "XC"-Nomenklatur für Dichtefunktionale heißt LDA daher SVWN.

Gl. 276 entspricht der Annahme, daß sich die Austausch-Korrelations-Energie eines inhomogenen Systems dadurch darstellen läßt, daß man für infinitesimale Teile der inhomogenen Dichte, die jeweils $\rho(\mathbf{r})d\mathbf{r}$ Elektronen enthalten, die Resultate des homogenen Elektronengases verwendet und dann die Beiträge $\epsilon_{xc}(\rho)\rho(\mathbf{r})d\mathbf{r}$ über den gesamten Raum aufsummiert.

Trotz all dieser Näherungen: Resultate ähnlich gut oder etwas besser als HF (s.u.).

generalized gradient approximations (GGA)

Analog zu einer Taylor-Reihe sollten LDA-artige Ausdrücke

$$E_{xc}^{LDA}[\rho] = \int \rho(\mathbf{r}) \epsilon_{xc}(\rho) d\mathbf{r}$$
(279)

besser werden, wenn man Terme höherer Ordnung mitnimmt, die dann Ableitungen der Dichte enthalten; in 1. Ordnung ist dies der Gradient:

$$E_{xc}^{GGA}[\rho] = \int f(\rho(\mathbf{r}), \nabla \rho(\mathbf{r})) \, d\mathbf{r}$$
(280)

Zahlreiche Vorschläge für die Funktion f (mit mehr oder weniger nachvollziehbarem physikalischen Hintergrund), u.a.:

- Austausch-Funktional von Becke (B oder B88) mit 1 empirischen Parameter, angepaßt an exakt bekannte Austauschenergien der Edelgasatome;
- Austausch- und Korrelationsfunktionale von Perdew (P bzw. P86) (1 empirischer Parameter im Austauschfunktional);
- parameter-freies Austausch-Funktional von Perdew und Wang (PW91);
- Korrelationsfunktional von Lee, Yang und Parr (LYP) mit 1 empirischen Parameter, angepaßt an Korrelationsrechnungen für das He-Atom;
- . . .

 \Rightarrow typische Kombinationen: BP86, BPW91, BLYP, \ldots

Keine davon ist deutlich überlegen; alle bringen Resultate von ähnlicher Qualität: besser als LDA, aber nicht in allen Aspekten (s.u.).

Hybridmethoden

Die übliche Aufteilung des Austausch-Korrelations-Funktionals

$$E_{xc} = E_x + E_c \tag{281}$$

scheint zu suggerieren, daß folgender Ansatz gut sein müßte:

$$E_{xc} = E_x^{HF} + E_c \tag{282}$$

(beachte: HF-Austausch ist exakt für 1-Determinanten-Wellenfunktionen.)

Dieser Ansatz verbessert LDA-Resultate, aber nicht so stark wie GGA-Funktionale für E_c und E_x . Grund: systematische Fehler in E_c und E_x kompensieren sich nicht mehr, wenn E_x^{HF} verwendet wird.

Besserer Weg zur Verwendung von E_x^{HF} : Man kann zeigen, daß die Austausch-Korrelations-Energie exakt gegeben ist durch:

$$E_{xc} = \int_{0}^{1} \langle \Psi_{\lambda} | V_{xc}(\lambda) | \Psi_{\lambda} \rangle \, d\lambda \tag{283}$$

wobei der Parameter λ die Elektron-Elektron-Wechselwirkung "einschaltet". Die einfachste Näherung zur Berechnung dieses Integrals lautet:

$$E_{xc} \approx \frac{1}{2} E_{xc}^{\lambda=0} + \frac{1}{2} E_{xc}^{\lambda=1}$$
 (284)

Bei $\lambda = 0$ gibt es keine Korrelation, und den Austausch kann man wiederum exakt mit E_x^{HF} wiedergeben.

Bei $\lambda = 1$ muß man approximative Funktionale verwenden; z.B.: LDA an dieser Stelle ergibt Beckes "half-and-half"-Methode (HH).

Es stellt sich heraus, daß man die Resultate verbessern kann, wenn man weniger als 50% exakten HF-Austausch "beimischt". Das populärste Hybridfunktional B3LYP verwendet den Ausdruck:

$$E_{xc}^{B3LYP} = (1-a)E_x^{LDA} + aE_x^{HF} + bE_x^B + cE_c^{LYP} + (1-c)E_c^{LDA}$$
(285)

Die 3 empirischen Parameter a, b, c wurden an Atomisierungs- und Ionisierungsenergien, Protonaffinitäten und Gesamtenergien eines Standard-Molekülsatzes angepaßt $\rightarrow a = 0.20$, b = 0.72, c = 0.81.

a bestimmt den Anteil an exaktem Austausch, der zum LDA hinzukommt, und b bzw. c die Anteile von GGA-Korrekturen zu Austausch und Korrelation.

Dadurch deutliche Verbesserungen gegenüber reinem GGA (und LDA).

Seit dem de-facto-Standard B3LYP wurden *sehr viele* weitere Funktionale vorgeschlagen (andere Hybride, z.T. mit mehr, weniger oder gar keinen empirischen Parametern; "meta-GGA" ohne exakten Austausch aber mit höherer Ableitungen der Dichte; KS-Orbitalabhängige Funktionale; usw.); keiner war bisher ähnlich erfolgreich und verbreitet.

Implementierungsdetails

Entwickelt man die KS-Orbitale in eine AO-Basis, erhält man wie bei HF ein verallgemeinertes Eigenwertproblem in Matrixform:

$$F^{\rm KS}C = SC\epsilon \tag{286}$$

Dabei ist die KS-Fock-Matrix fast identisch zur HF-Fock-Matrix, mit dem einzigen Unterschied, daß anstelle des HF-Austauschterms

$$K_{\mu\nu} = \sum_{\lambda\sigma} D_{\lambda\sigma} \int \int \phi_{\mu}(\mathbf{r}_1) \phi_{\lambda}(\mathbf{r}_1) \frac{1}{r_{12}} \phi_{\nu}(\mathbf{r}_2) \phi_{\sigma}(\mathbf{r}_2) \, d\mathbf{r}_1 d\mathbf{r}_2 \tag{287}$$

ein Integral über das Austausch-Korrelations-Potential auftritt:

$$V_{\mu\nu}^{xc} = \int \phi_{\mu}(\mathbf{r}_1) V_{xc}(\mathbf{r}_1) \phi_{\nu}(\mathbf{r}_1) \, d\mathbf{r}_1 \tag{288}$$

- die Berechnung von $K_{\mu\nu}$ ist formal aufwendiger als die von $V^{xc}_{\mu\nu}$, aber:
- die funktionalen Formen von $V_{xc}(\mathbf{r}_1)$ sind sehr kompliziert \Rightarrow keine analytische Lösung möglich \Rightarrow numerische Integration nötig, mit speziellen Problemen:
 - geeignete Wahl von Integrationsverfahren und -gitter,
 - guter Kompromiß zwischen Aufwand (wenige Gitterpunkte) und Genauigkeit (viele Gitterpunkte) nötig,
 - Verletzung der Rotationsinvarianz der Energie,
 - grid superposition error (analog zu BSSE),
 - Probleme mit analytischen Ableitungen und
 - "Zufälligkeit" der numerischen Fehler führen ggf. zu
 - Konvergenzproblemen bei lokalen Geometrieoptimierungen und
 - Artefakten bei Frequenzberechnungen

Die Coulomb-Integrale können etwas anders interpretiert werden als in HF:

$$J_{\mu\nu} = \sum_{\lambda\sigma}^{K} D_{\lambda\sigma} \int \int \phi_{\mu}(\mathbf{r}_{1}) \phi_{\nu}(\mathbf{r}_{1}) \frac{1}{r_{12}} \phi_{\lambda}(\mathbf{r}_{2}) \phi_{\sigma}(\mathbf{r}_{2}) d\mathbf{r}_{1} d\mathbf{r}_{2}$$
(289)

$$= \sum_{\lambda\sigma}^{K} D_{\lambda\sigma} \int \int \phi_{\mu}(\mathbf{r}_{1}) \phi_{\nu}(\mathbf{r}_{1}) \frac{1}{r_{12}} \rho(\mathbf{r}_{2}) d\mathbf{r}_{1} d\mathbf{r}_{2}$$
(290)

(291)

Entwicklung dieser Dichten $\rho(\mathbf{r}_2)$ in eine "Hilfsbasis" aus m atomzentrierten Funktionen reduziert den Rechenaufwand von K^4 auf K^2m (*Coulomb-fitting* bzw. resolution of the *identity* (*RI*)): für kleinere Systeme z.Z. noch effizienter als linear scaling.

Die Anforderungen an die AO-Basis sowie BSSE-Effekte sind bei DFT geringer als bei traditionellen Korrelationsmethoden.

exemplarische Resultate

- LDA:
 - Bindungslängen ca. 2 pm falsch (meist zu kurz, aber X-H und C≡C zu lang)
 - -Bindungswinkel ca. 1.9° falsch
 - Bindungsenergien systematisch deutlich zu groß (overbinding)
- GGA:
 - Geometrien kaum besser als LDA (Fehler oft überkompensiert)
 - aber Energetik erheblich verbessert
- Hybridfunktionale:
 - Geometrien oft auf CCSD(T)-Niveau
 - Energetik mit $\gtrsim~2~\rm kcal/mol$ fast bei "chemischer Genauigkeit"
- Basissatzanforderungen geringer: (aug)-cc-pVTZ empfohlen für quantitative Resultate, mit größeren Basen kaum Verbesserungen
- für Übergangsmetallkomplexe ist DFT z.Z. die einzig vernünftige Wahl (CC-Methoden zu teuer, HF und MP2 oft krass falsch)

32 1 st row species, 6-31G(d) basis, Johnson, Gill, and Pople, 1993						
HF	0.020 / 2.0	SVWN	0.021 / 1.9			
MP2	0.014 / 1.8	BLYP	0.020 / 2.3			
QCISD	0.013 / 1.8					
	13 species, Martin, El-	Yazal, and François, 1995a				
CCSD(T)/cc-pVDZ	0.018 / 2.2	B3LYP/cc-pVDZ	0.009 / 1.7			
CCSD(T)/cc-pVTZ	0.014 / 0.6	B3LYP/cc-pVTZ	0.004 / 0.3			
CCSD(T)/cc-pVQZ	0.002 / 0.4	B3LYP/cc-pVQZ	0.004 / 0.3			

 Table 9-5. Compilation of mean absolute and maximum absolute deviations (in parentheses) for atomization energies [kcal/mol] of small main group molecules from different sources.

	32 1 st row specie	es, 6-31G(d) basis	s set, Johnson, Gill, and	d Pople, 1993	
HF	8	5.9	SVWN	35.7	
MP2	2	2.4	BVWN	4.4	
QCISD	28.8		BLYP	5.6	
G2 (first SVWN	t 2 cols.) and ext.	G2 set, 6-311+G	(3df,2p) basis, Ernzerh	of and Scuseria,	1999a
PBE	8.6	(26)		17.1	(210)
		× · · /		1 / 1 /	(52)
BLYP	4.7	(15)		7.1	(52)
BLYP B3LYP	4.7 2.4	(15) (10)		7.1	(52) (28) (20)
BLYP B3LYP PBE1PBE	4.7 2.4 3.5	(15) (10) (10)		7.1 3.1 4.8	(52) (28) (20) (24)

	HF	1	MP2	C	CSD	CC	SD(T)	Experiment
	pV6Z	pcV6Z	pcV(56)Z	pcV6Z	pcV(56)Z	pcV6Z	pcV(56)Z	
F_2	-155.3	182.8	185.4	126.1	128.0	158.8	161.1	163.4(06)
H_2	350.8	439.8	440.7	457.7	458.1	457.7	458.1	458.0(00)
HF	405.7	611.6	613.8	582.5	583.9	591.6	593.3	593.2(07)
O ₃	-238.2	718.8	726.6	490.5	496.1	599.2	605.5	616.2(17)
HOF	230.4	690.3	695.0	624.2	627.5	659.1	662.9	674.9(42)
$CH_2(^{I}A_1)$	531.1	738.1	740.8	747.7	749.4	756.2	757.9	757.1(22)
HNO	331.6	890.7	897.2	812.2	816.8	855.4	860.4	861.5(03)
N_2	482.9	1003.6	1010.6	908.9	913.9	949.6	954.9	956 3(02)
H_2O	652.3	992.2	996.1	957.6	960.2	972.7	975.5	975.3(02)
CO	730.1	1141.2	1145.8	1048.8	1052.3	1083.2	1086.9	1086.7(05)
H_2O_2	562.9	1159.5	1166.0	1082.6	1087.2	1121.1	1126.1	-
N_2H_2	631.8	1253.4	1261.6	1191.6	1197.2	1234.2	1240.2	_
HNC	793.1	1282.2	1288.8	1205.2	1209.9	1242.8	1247.8	_
NH3	841.2	1243.4	1248.6	1227.3	1230.7	1243.8	1247.4	1247.9(04)
HCN	833.5	1356.8	1363.5	1266.5	1271.3	1305.9	1311.0	1312.8(26)
CH_2O	1078.2	1605.4	1611.5	1529.4	1533.8	1563.4	1568.0	1566.6(07)
CO_2	1033.4	1736.9	1745.2	1567.2	1573.6	1626.5	1633.2	1632.5(05)
C_2H_2	1229.1	1736.1	1742.5	1656.5	1661.0	1692.2	1697.1	1697.8(10)
CH₄	1374.1	1749.0	1753.1	1744.3	1747.0	1756.6	1759.4	1759.3(06)
C_2H_4	1793.9	2372.4	2379.3	2324.0	2328.9	2355.7	2360.8	2359 8(07)

Table 15.21 Errors relative to experiment in atomization energies (kJ/mol), calculated with all electrons correlated. The cc-pcV6Z energies have been obtained as described in Section 15.6.1

_		HF	MP2	CCSD	CCSD(T)
$\overline{\Delta}$	cc-pCVDZ	-450.1	-76.2	-125.4	-103.3
	cc-pCVTZ	-426.1	-4.7	65.1	-34.9
	cc-pCVQZ	-423.7	17.7	-46.1	-14.3
	cc-pCV5Z	-423.2	26.1	-39.8	-7.4
	cc-pcV6Z ^a	-423.1	29.7	-37.3	-4.7
$\Delta_{\rm std}$	cc-pCVDZ	187.3	36.8	51.2	37.4
	cc-pCVTZ	179.6	30.4	37.0	14.7
•	cc-pCVQZ	179.1	33.8	32.1	7.3
	cc-pCV5Z	179.3	35.7	30.3	4.9
	cc-pcV6Z ^a	179.3	36.8	29.4	3.8
$\overline{\Delta}_{abs}$	cc-pCVDZ	450.1	76.2	125.4	103.3
	cc-pCVTZ	426.1	23.3	65.1	34.9
	cc-pCVQZ	423.7	28.6	46.1	14.3
	cc-pCV5Z	423.2	33.7	39.8	7.4
	cc-pcV6Z ^a	423.1	36.2	37.3	4.7
Δ_{nax}	cc-pCVDZ	901.9	144.7	223.3	155.7
	cc-pCVTZ	857.8	55.2	161.4	58.8
	cc-pCVQZ	855.1	87.7	139.0	32.6
	cc-pCV5Z	854.8	99.3	129.9	21.9
	cc-pcV6Z ^a	854.4	104.5	125.7	17.0

^acc-pV6Z for the Hartree-Fock model.

Einige (bald ehemalige?) Probleme von DFT

Elektron-Selbstwechselwirkung:

Bei HF hebt sich die im Coulombterm vorhandene Elektron-Selbstwechselwirkung durch den entsprechenden Beitrag im Austauschterm exakt heraus (s.o.).

Das gilt i.A. bei DFT nicht mehr, weil der exakte HF-Austausch durch das approximative E_{xc} -Funktional ersetzt wird.

 \Rightarrow in Einzelfällen bis 17 kcal/mol Fehler in Relativenergien oder bis 9 kcal/mol in Barrierenhöhen.

Funktionale mit *self-interaction correction (SIC)* bekannt (Perdew/Zunger, 1981), aber Implementation bisher schwierig. Neuere Entwicklungen könnten das ändern.

falsches asymptotisches Verhalten:

Das Austausch-Potential sollte sich bei großen Entfernungen zwischen Elektron und Molekül wie $-1/r\,$ verhalten.

Alle üblichen Austausch-Potentiale klingen jedoch exponentiell ab.

 \Rightarrow van-der-Waals-Wechselwirkungen (Dispersion) werden krass falsch (z.B.: Edelgasatom-Dimere sind in LDA durch Fehlerkompensation noch schwach gebunden, in GGA rein repulsiv)

An diesem Problem wird gearbeitet.

DFT für angeregte Zustände:

DFT galt bis vor kurzem als eine reine Grundzustandstheorie.

Neben UKS und ROKS (für andere Systeme als closed-shell) z.Z. wichtig: zeitabhängige DFT (TD-DFT).

Neuere Entwicklungen machen DFT direkt auf angeregte Zustände anwendbar.

alte DFT/KS-Streitfragen

Haben KS-Orbitale irgendeine Bedeutung?

Übliches Argument: Für HF-Orbitalenergien gilt Koopmans Theorem (Ionisationsenergien, Elektronaffinitäten) \Rightarrow HF-Orbitale haben eine physikalische Bedeutung. \leftrightarrow KS-Orbitalenergien sind deutlich anders und anscheinend falsch \Rightarrow sie haben keine Bedeutung.

Tatsächlich beruht Koopmans Theorem für HF-Orbitale auf Näherungen (keine Orbitalrelaxation, keine Korrelation), die bei IPs zu Fehlerkompensation führen (bei EAs nicht; s.o.).

Tatsächlich muß man unterscheiden zwischen

- \bullet real existierendes DFT/KS mit approximative
m E_{xc} : krass falsche Ionisierungs- und Anregungsenergien
- DFT/KS mit exaktem E_{xc} :
 - -Koopmans Theorem gilt nicht, trotzdem: höchste Orbital
energie=Ionisierungsenergie
 - DFT-Testrechnungen mit aus CI-Rechnungen konstruiertem quasi-exaktem V_{xc} liefern erheblich verbesserte Ionisierungs- und Anregungsenergien

Ist DFT bzw. KS eine Ein-Determinanten-Theorie? (Dissoziationsproblem)

Solange der Hamiltonoperator unabhängig vom Spin ist (z.B. bei Abwesenheit äußerer Magnetfelder) und wenn die exakten Funktionale bekannt wären, müßten die Hohenberg-Kohn-Theoreme und das Kohn-Sham-Verfahren sowohl für closed-shell- als auch für open-shell-Systeme gelten.

Mit den verfügbaren approximativen Funktionalen ist es sinnvoll, wie bei HF-SCF zu konstruieren: restricted und unrestricted Kohn-Sham (RKS, ROKS, UKS).

Ist DFT bzw. KS ab-initio oder semiempirisch?

semiempirisch: einige angepaßte Parameter in vielen Funktionalen; keine systematische Verbesserungsmöglichkeit

ab-initio: Anzahl Parameter extrem viel kleiner als bei echten semiempirischen Methoden und universell; zugrunde liegende Theorie im Prinzip exakt.

Zs.hang (Anregungs-)Energien \leftrightarrow Zeitpropagation

Ein gegebener Hamiltonoperator habe die Eigenfunktionen $\{\phi_n\}$. Dann kann jede Anfangswellenfunktion $\psi(0)$ in der Basis der Eigenfunktionen ausgedrückt werden:

$$\psi(0) = \sum_{n} c_n \phi_n \quad \text{mit} \quad c_n = \langle \phi_n | \psi(0) \rangle$$
(292)

Die Lösung $\psi(t)$ der zeitabhängige Schrödingergleichung kann dann geschrieben werden als (s.o.):

$$\psi(t) = e^{-i\hat{H}t/\hbar}\psi(0) = \sum_{n} c_n e^{-iE_n t/\hbar}\phi_n$$
(293)

Die Autokorrelationsfunktion A(t) von $\psi(0)$ sei definiert durch

$$A(t) = \langle \psi(0) | \psi(t) \rangle = \langle \psi(0) | e^{-i\hat{H}t/\hbar} | \psi(0) \rangle$$
(294)

In der Basis der Eigenfunktionen $\{\phi_n\}$ kann A(t) geschrieben werden als:

$$A(t) = \sum_{n} c_n e^{-iE_n t/\hbar} \langle \psi(0) | \phi_n \rangle = \sum_{n} |c_n|^2 e^{-iE_n t/\hbar}$$
(295)

In dieser Darstellung kann die Fouriertransformierte von A(t) analytisch berechnet werden:

$$S(E) = \frac{1}{T} \operatorname{Re} \int_{0}^{T} e^{iEt/\hbar} \langle \psi(0) | \psi(t) \rangle dt$$
(296)

$$= \sum_{n} |c_{n}|^{2} \frac{1}{T} \operatorname{Re} \int_{0}^{T} e^{i(E-E_{n})t/\hbar} dt$$
(297)

$$= \sum_{n} |c_n|^2 \frac{\hbar}{(E-E_n)T} \sin \frac{(E-E_n)T}{\hbar}$$
(298)

$$= \sum_{n} |c_n|^2 \operatorname{sinc} \frac{(E - E_n)T}{\hbar}$$
(299)

Die Funktion S(E) ist also eine Superposition von Funktionen $\operatorname{sinc}(x) = (\sin x)/x$, die je nach dem Wert von E_n gegeneinander verschoben sind. Jede dieser Funktionen $(\sin x)/x$ hat einen "peak" bei x = 0 und an den anderen Stellen kleinere, oszillative Werte. Im Limit $T \to \infty$ geht die sinc-Funktion gegen die Delta-Funktion $\delta(x)$.

 $\Rightarrow S(E)$ ist ein *Spektrum* auf der Energie-Achse, mit "peaks" an den Eigenwerten von \hat{H} . Die Größe von T bestimmt die Auflösung des Spektrums: Bei $T \to \infty$ ist das Spektrum maximal aufgelöst (*stick spectrum*). Bei finitem aber großem T befindet sich mehr oder weniger "Rauschen" zwischen den einzelnen Spektralpeaks. Bei finitem, zu kleinem Twerden die sinc-Funktionen ggf. so breit, daß einige Spektralpeaks nicht mehr voneinander getrennt erscheinen ("Unschärferelation").

Das Limit T statt ∞ im Fouriertransform-Integral entspricht einer Multiplikation der Autokorrelationsfunktion mit einer Stufenfunktion bis T. Die Fouriertransformierte davon ist gerade die sinc-Funktion.

Verwenden wir stattdessen andere Fouriertransform-Funktionenpaare, z.B. von Lorentzoder Gaußkurven, ergibt sich ein auch bei kurzen Integrationszeiten rauschfreies Spektrum S(E), bei dem jeder peak einem Eigenwert entspricht; hier gezeigt für die gebundenen Zustände eines Morseoszillators: ¹

Equation-of-motion-(EOM)-Methoden

Die meisten elektronisch angeregten Zustände sind nicht gut durch eine Wellenfunktion beschreibbar, die eine einzelne Slaterdeterminante ist oder durch wenige Anregungstypen (z.B. nur SD, singles und doubles) aus einer einzigen Slaterdeterminante erzeugt werden kann (*single-reference*-Methoden).

 \Rightarrow Weder HF noch CC sind für allgemeine angeregte Zustände brauchbar.

Mit diversen (letztlich eng verwandten) Tricks kann man trotzdem Grundzustandsmethoden verwenden, um Energien und Eigenschaften angeregter Zustände zu ermitteln:

Die Wellenfunktion Ψ_{exc} für den angeregten Zustand ergebe sich formal durch einen Anregungsoperator \mathcal{R} aus der Wellenfunktion Ψ_{gr} des Grundzustands:

$$\Psi_{exc} = \mathcal{R}\Psi_{gr} \tag{300}$$

Dann lautet die Schrödingergleichung für den angeregten Zustand:

$$H\mathcal{R}\Psi_{gr} = E_{exc}\mathcal{R}\Psi_{gr} \tag{301}$$

Wenn wir Gl. 301 von links mit \mathcal{R}^{-1} multiplizieren und $\mathcal{R}^{-1}\mathcal{R} = \hat{1}$ gilt, erhalten wir:

$$\mathcal{R}^{-1}\hat{H}\mathcal{R}\Psi_{gr} = E_{exc}\Psi_{gr} \tag{302}$$

Was mit einem "effektiven Hamiltonoperator" $\overline{H} = \mathcal{R}^{-1} \hat{H} \mathcal{R}$ geschrieben werden kann als

$$\bar{H}\Psi_{gr} = E_{exc}\Psi_{gr} \tag{303}$$

Dies ist eine normale Operator-Eigenwertgleichung. Obwohl in dieser Gleichung nur eine Grundzustandswellenfunktion auftaucht (und deshalb braucht man zur Berechnung auch nur Grundzustandsmethoden), ergibt sich trotzdem die Energie eines angeregten Zustands!

Alternativ kann man die Schrödingergleichung für den Grundzustand

$$H\Psi_{gr} = E_{gr}\Psi_{gr} \tag{304}$$

von links mit \mathcal{R} multiplizieren und erhält

$$\mathcal{R}\hat{H}\Psi_{gr} = E_{gr}\mathcal{R}\Psi_{gr} \tag{305}$$

Subtraktion dieser Gleichung von Gl. 301 liefert:

$$[\hat{H}, \mathcal{R}]\Psi_{gr} = \Delta E_{exc} \mathcal{R}\Psi_{gr} \tag{306}$$

mit dem üblichen Kommutator $[\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A}$ und der Definition $\Delta E_{exc} = E_{exc} - E_{gr}$. Im Schrödinger-Bild der Quantenmechanik ist zentrale Bewegungsgleichung die zeitabhängige Schrödingergleichung für die Wellenfunktionen:

$$i\hbar\frac{\partial}{\partial t}\Psi = \hat{H}\Psi \tag{307}$$

und die Operatoren sind stationär. Im *Heisenberg-Bild* sind dagegen die Wellenfunktionen stationär und die Operatoren Ω bewegen sich gemäß

$$i\hbar \frac{d}{dt}\Omega = [\Omega, \hat{H}] \tag{308}$$

Daher kann Gl. 306 auch geschrieben werden als

$$i\hbar \frac{d}{dt} \mathcal{R} \Psi_{gr} = \Delta E_{exc} \mathcal{R} \Psi_{gr} \tag{309}$$

Wir sehen also, daß uns eine zeitabhängige Betrachtung der Grundzustandswellenfunktion Energien angeregter Zustände liefern kann.

response theory

Die frequenzabhängige Polarisierbarkeit $\alpha(\omega)$ ist gegeben durch

$$\alpha(\omega) = \sum_{i} \left(\frac{|\langle \Psi_0 | \hat{\mu} | \Psi_i \rangle|^2}{\omega_{oi} - \omega} + \frac{|\langle \Psi_0 | \hat{\mu} | \Psi_i \rangle|^2}{\omega_{oi} + \omega} \right)$$
(310)

Dabei sind die ω_{oi} die exakten Anregungsfrequenzen vom Grundzustand zum angeregten Zustand Nr. *i*.

Daher lassen sich die Anregungsenergien als Pole von $\alpha(\omega)$ bestimmen. $\alpha(\omega)$ ist aber allen Quantenchemie-Methoden zugänglich, inkl. Grundzustandsmethoden.

Die Dipol-Übergangsmatrixelemente sind offenbar gegeben durch:

$$|\langle \Psi_0 | \hat{\mu} | \Psi_i \rangle|^2 = \lim_{\omega \to \omega_{oi}} (\omega_{oi} - \omega) \alpha(\omega)$$
(311)

Im Rahmen der *response theory* betrachtet man die Antwort eines Systems auf eine zeitabhängige Störung (die per Fourieranalyse aus vielen Frequenzkomponenten ω besteht) und kann durch Reihenentwicklung zeigen (Koch/Jørgensen),

- daß die Polarisierbarkeit die lineare Antwort (*linear response*) des Systems auf die Störung ist,
- daß die Berechnung der Polstellen der Polarisierbarkeit durch eine Eigenwertgleichung der Form 303 geschehen kann,
- daß die Berechnung von Dipol-Übergangsmatrixelementen die Lösung eines linearen Gleichungssystems erfordert, in dem u.a. wiederum ähnliche Größen auftauchen,
- und daß Übergangsmatrixelemente zwischen angeregten Zuständen die Berechnung der quadratischen Antwort erfordern, usw.

Außerdem ist es möglich, für angeregte Zustände zu berechnen

- analytische Gradienten \rightarrow Geometrieoptimierung,
- Frequenzen \rightarrow Spektren (harmonische Näherung),
- diverse Moleküleigenschaften.

Dies erlaubt die Anwendung der hochgenauen coupled-cluster-Methoden auch für angeregte Zustände (EOM-CC, coupled cluster response theory).

Linear response theory wurde auch mit anderen Methoden verwirklicht, insbes. HF (= random-phase approximation (RPA) der Physik), MP2, MCSCF, \dots

Zeitabhängige Dichtefunktionaltheorie (TDDFT)

Linear response theory kann ebenso auf DFT-Niveau betrieben werden. Bei der normalen, zeitunabhängigen Dichtefunktionaltheorie löst man die zeitunabhängigen Kohn-Sham-Gleichungen

$$\left[-\frac{\nabla^2}{2} + v_s[\rho](\vec{r})\right]\phi_i(\vec{r}) = \epsilon_i\phi_i(\vec{r})$$
(312)

mit dem effektiven Einteilchen-Kohn-Sham-Potential

$$v_s(\vec{r}) = v_{ext}(\vec{r}) + v_H(\vec{r}) + v_{xc}(\vec{r})$$
(313)

das sich zusammensetzt aus dem "externen Potential" der Kerne, dem Coulomb-Anteil der Elektron-Elektron-Wechselwirkung (Hartree-Potential) und dem formal exakten aber unbekannten Austausch-Korrelations-Potential.

Bei der TD-DFT verwendet man stattdessen formal die zeitabhängigen Gleichungen

$$\left[-\frac{\nabla^2}{2} + v_s[\rho](\vec{r}, t)\right]\phi_i(\vec{r}, t) = i\frac{\partial}{\partial t}\phi_i(\vec{r}, t)$$
(314)

und wendet darauf die linear response theory an. Dabei benötigt man als einzige unbekannte Größe im effektiven Ein-Teilchen-Kohn-Sham-Potential v_s ein zeitabhängiges Austausch-Korrelations-Potential $v_{xc}(t)$ bzw. im Fall der linearen Antwort die erste Funktionalableitung davon nach der zeitabhängigen Dichte:

$$f_{xc}(\vec{r},\vec{r}',t,t') = \frac{\delta v_{xc}(\vec{r},t)}{\delta \rho(\vec{r}',t')}$$
(315)

Dieser von der Zeitdifferenz t - t' abhängige "xc-Kern" kann nach Fouriertransformation auch in der Frequenzdomäne betrachtet werden: $f_{xc}(\vec{r}, \vec{r}', \omega)$. Die einfachste und historisch erste Näherung dafür ist die sog. "adiabatische LDA" (ALDA):

$$f_{xc}^{ALDA}(\vec{r}, \vec{r}', \omega) = \delta(\vec{r} - \vec{r}') \frac{d^2}{d\rho^2} \left[\rho \epsilon_{xc}^{hom}(\rho) \right] \Big|_{\rho = \rho_0(\vec{r})}$$
(316)

in der der eigentlich nicht-lokale Term f_{xc} durch einen lokalen Ausdruck ersetzt und außerdem der übliche LDA-Ausdruck für den xc-Teil eingeführt wird. Außerdem ignoriert man insbesondere die Zeit-(bzw. Frequenz-)Abhängigkeit der Störung bzw. der Systemantwort völlig, was eigentlich nur für langsame Veränderungen gut sein sollte. In Anwendungsrechnungen sind die Resultate trotzdem besser, als man nach diesen Näherungen erwarten könnte.

Heute gibt es TDDFT-Implementationen für quasi beliebige DFT-Funktionale. In Anwendungen zeigt sich, daß traditionelle Funktionale (inkl. B3LYP!) weniger gute Resultate liefern als einige modernere Funktionale, insbesondere bei höheren Anregungen, die häufig (z.T.) Rydberg-Charakter haben.

TD-DFT-Resultate:

Empirische Erfahrung zeigte: Elektronische TD-DFT-Anregungsenergien sind

- weitgehend unabhängig vom Funktional (z.B. SVWN, BP86, B3LYP)
- und relativ genau (Fehler ca. 0.3 eV, i.Vgl. zu 0.9 eV und 1.65 eV für TD-HF = RPA bzw. CIS)

solange die Anregungsenergien klein sind (deutlich kleiner als die negative Orbitalenergie des höchsten besetzten Orbitals) und keine Beiträge enthalten, die von Anregungen zu Orbitalen herrühren, die im vorliegenden Funktional nur schwach gebunden oder gar ungebunden sind.

Aufgrund der falschen Asymptotik (nicht -1/r) traditioneller Funktionale werden höhere Anregungsenergien deutlich schlechter: Fehler ca. 0.5 eV.

 \Rightarrow erhebliche Verbesserung möglich durch Verwendung spezieller Funktionale, die diese Asymptotik korrigieren, z.B. HCTH(AC) und PBE1PBE, sofern der Basissatz wenigstens triple-zeta-Qualität hat und zusätzliche diffuse Funktionen enthält.

Table 9-14. Electronic excitation energies for single electron excitations from	om the π (b _{3u}) orbital of C ₂ H ₄ [eV] using an augmented POL basis se
---	---

Transition	SVWN ^a	BLYP ^a	B3LYP ^a	HCTH(AC) ^a	PBE ^b	PBE1PBE ^b	PBE1PBE ^{b,c}	CASPT2 ^d	Exp ^a
$\pi \rightarrow \pi^* ({}^3B_{1\nu})$	4.70	4.32	4.07	4.33	4.34	3.92	3.94	4.39	4.36
$\pi \rightarrow 3s ({}^{3}B_{3u})$	6.51	6.13	6.50	7.10	6.48	6.79	6.85	7.05	6.98
$\pi \rightarrow 3s ({}^{1}B_{3u})$	6.55	6.18	6.57	7.16	6.52	6.93	6.99	7.17	7.11
$\pi \rightarrow 3p\sigma ({}^{3}B_{1o})$	7.03	6.63	7.05	7.76	7.06	7.36	7.42	7.80	7.79
$\pi \rightarrow 3p\sigma ({}^{1}B_{1v})$	7.05	6.65	7.08	7.78	7.08	7.51	7.59	7.85	7.80
$\pi \rightarrow 3p\sigma ({}^{1}B_{2\sigma})$	7.04	6.63	7.09	7.77	7.03	7.52	7.62	7.95	7.90
$\pi \rightarrow \pi^* ({}^1B_{1u})^\circ$	7.39	7.12	7.36	7.61	7.46	7.58	7.60	8.40	8.00
$\pi \rightarrow 3p\pi ({}^{3}A_{g})$	7.27	6.90	7.33	8.15	8.04	8.08	8.34	8.26	8.15
$\pi \rightarrow 3p\pi ({}^{1}A_{g})$	7.31	6.96	7.41	8.33	8.11	8.04	8.08	8.40	8.28
$\pi \rightarrow 3d\sigma ({}^{3}B_{3u})$	7.10	6.66	7.34	8.64	8.65	8.55	8.66	8.57	8.57
$\pi \rightarrow 3d\sigma ({}^{1}B_{3\mu})$	7.11	6.68	7.36	8.70	8.25	8.65	8.69	8.66	8.62
$\pi \rightarrow 3d\delta ({}^{1}B_{3u})$	7.63	7.21	7.75	8.95	8.26	8.76	8.82	9.03	8.90
$\pi \rightarrow 3d\delta ({}^{1}B_{2u})$	7.72	7.35	7.87	9.04	8.78	9.02	9.09	9.18	9.05
$\pi \rightarrow 3d\pi ({}^{1}B_{1u})$	7.80	7.75	8.14	9.32	8.85	9.33	9.30	9.31	9.33
mean abs. error	0.94	1.26	0.85	0.07	0.43	0.21	0.19	0.09	

^a Taken from Tozer and Handy, 1998; ^b taken from Adamo, Scuseria and Barone, 1999; ^c with the 6-311++G(d,p) basis set; ^d taken from Serrano-Andrés, et al., 1993.

 $\label{eq:Figure 9-2.} Figure 9-2. Performance of various functionals in the framework of time-dependent DFT for excitation energies of ethylene.$

linear-response-coupled-cluster-Resultate: (Jürgen Gauss, Uni Mainz)

Accuracy of CCSD Excitation Energies

	excitation e	AEL	
	CCSD	FCI	
CH+			
1∑+	9.11	8.55	1.96
1 <u>∑</u> +	13.58	13.53	1.06
1∑+	17.32	17.22	1.13
¹∏	3.26	3.23	1.03
¹ ∏	14.45	14.13	1.24

Accuracy of CC Models with Triple Excitations in the Calculation of Excited States

	excitation energy (eV)							
	CCSD	CC3	CCSDT-3	CCSDT	FCI			
CH+								
1∑+	9.11	8.78	8.78	8.62	8.55			
1 ∑ +	13.58	13.54	13.55	13.53	13.53			
1∑+	17.32	17.24	17.25	17.23	17.22			
1∏	3.26	3.24	3.24	3.23	3.23			
¹ ∏	14.45	14.35	14.35	14.19	14.13			

Comparison of CC3 and TDDFT

vertical excitation energies (eV) for pyrrole

Transition	TDDFT	CC3
$^{1}A_{g} (1a_{2} \rightarrow 3s)$	5.05	5.10
$^{1}A_{2}(1a_{2} \rightarrow 3p_{z})$	5.88	5.86
$^{1}B_{1}(1a_{2} \rightarrow 3p_{y})$	5.96	5.85
$^{1}B_{2}(1a_{2}\rightarrow 3p_{x})$	6.01	5.98
$^{1}B_{1}(1b_{1}\rightarrow 3s)$	5.88	5.99
¹ A ₁ (valence)	6.29	6.37
$^{1}A_{2}(1a_{2}\rightarrow 3d)$	6.44	6.43
$^{1}B_{1}(1a_{2}\rightarrow 3d)$	6.51	6.47
¹ B ₂ (valence)	6.45	6.63

• satisfactory agreement for Rydberg and valence states

Analytic CCSD Gradients for Excited States

		r _e	ω _e	T _e
		[Å]	[cm ⁻¹]	[eV]
BH	CCSD	1.211	2371	3.00
	Exp.	1.226	2344	2.86
CO	CCSD	1.224	1593	8.26
	Exp.	1.235	1516	8.07
N_2	CCSD	1.202	1755	8.84
	Exp.	1.213	1692	8.59
BF	CCSD	1.304	1281	6.42
	Exp.	1.213	1271	6.34

Performance of Diatomic Molecules

all calculations with aug-cc-pVTZ

Importance of Triple Excitations

	BH (¹ Π)	СН+ (1П)	$C_2(^1\Sigma_u)$	CO (¹ Π)
CCSD	1.2104	1.2221	1.2518	1.2196
CC3	1.2128	1.2281	1.2373	1.2421
Exp.	1.219	1.234	1.238	1.235

cc-pV5Z calculations, numerical differentiation

 \Rightarrow non-negligible contributions from higher excitations

aber triple-excitations sind nur ein $\operatorname{Einfluß}$ unter mehreren:

_

The 1¹B_{2u} State of Benzene

vertical excitation	5.219 eV
geometry relaxation	-0.150 eV
zero-point vibration	-0.140 eV
remaining basis set effects	-0.02 eV
triples corrections	-0.11 eV
theoretical 0-0 transition	4.80 eV
experimental 0-0 transition	4.724 eV

The Simulated Spectrum of C₅H₆

Simulation

Literatur TD-DFT, EOM-CC, usw.

- H. Koch und P. Jørgensen, J. Chem. Phys. 93 (1990) 3333: Ausführliche Darstellung der response theory für den CC-Fall, inkl. Berechnung der quadratic response.
- H. Koch, H. J. A. Jensen, P. Jørgensen und T. Helgaker, J. Chem. Phys. 93 (1990) 3345: Anwendungsbeispiele für linear-response-CCSD-Rechnungen auf kleine 2- und 3atomige Moleküle.
- J. F. Stanton und R. J. Bartlett, J. Chem. Phys. 98 (1993) 7029: kurze, abstrakte Darstellung der EOM-CC-Theorie; einige Beispielrechnungen.
- E. K. U. Gross und W. Kohn, Adv. Quantum Chem. 21 (1990) 255: Übersichtsartikel zum TD-DFT-Formalismus, von den Haupt-Protagonisten von TD-DFT bzw. DFT.
- M. Petersilka, U. J. Gossmann und E. K. U. Gross, Phys. Rev. Lett. 76 (1996) 1212: Einer von mehreren recht trockenen Grundlagenartikeln zum TD-DFT-Formalismus.
- C. Jamorski, M. E. Casida und D. R. Salahub, J. Chem. Phys. 104 (1996) 5134: kurze Darstellung einiger TD-DFT-Grundlagen; Anwendungsrechnungen zu N_2 im Vergleich zu anderen Methoden und zum Experiment.
- R. Bauernschmitt und R. Ahlrichs, Chem. Phys. Lett. 256 (1996) 454: Leistungstest für TD-DFT mit verschiedenen Funktionalen für kleinere und etwas größere Moleküle.
- S. J. A. van Gisbergen, F. Kootstra, P. R. T. Schipper, O. V. Gritsenko, J. G. Snijders und E. J. Baerends, Phys. Rev. A 57 (1998) 2556: kurzer Sketch einiger TD-DFT-Grundlagen aus etwas anderem Blickwinkel, Diskussion von Vergleichsrechnungen zu Auswirkungen verschiedener N\u00e4herungen.
- W. Koch und M. C. Holthausen: "A chemist's guide to density functional theory", Wiley-VCH, Weinheim, 2001 (2. Auflage): Dieses sehr gute Buch für Anwender enthält auf S. 63–64 leider nur eine kurze Passage zur TD-DFT-Theorie (1 Gleichung, keine ausführlichen Erklärungen), gibt dafür aber auf S. 168–173 einen guten Eindruck der zu erwartenden Genauigkeit, insbes. bei Verwendung unterschiedlicher Standard-Funktionale.